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Abstract
This document describes the systems submitted by
EURECOM-BISC to the first DIHARD diarization chal-
lenge, which is based on a binary key (BK) modelling
technique. BK-based approaches to speaker diarization are
flexible in their use of background training data and can operate
entirely without training data, learning necessary background
information at runtime. By making no assumptions about the
domain, this particular quality of BK-based approaches to
diarization, make it particularly well suited to domain-robust
diarization.

1. Data resources
The systems submitted do not use any external training data. No
additional database was used. Only the DIHARD development
set was used to tune system parameters. The systems work at a
per-file basis, i.e. the required models are estimated directly on
the audio stream being processed.

2. Detailed description
5 systems were submitted. They essentially share the same
structure and core technology, but vary on particular modules
like the acoustic frontend employed, speaker estimation and
clustering. All the variants of each module are described next.
Then each system is defined as a combination of modules.

2.1. Acoustic frontend

Two different acoustic frontends were used. As part of our
baseline, we employed traditional Mel-frequency cepstral co-
efficient (MFCC) features [1], comprising 19 static coefficients
computed from windows of 25ms with 10ms shift and with a
filterbank of 20 channels. Additionally, and as one of the pro-
posed enhancements, we employed a frontend called infinite im-
pulse response - constant Q, Mel-frequency cepstral coefficients
(ICMC) [2]. These features have been successfully applied
to tasks like speaker recognition, utterance verification [2] and
speaker diarization [3]. These features are similar to MFCC,
but they replace the short time Fourier transform by an infinite-
impulse response, constant Q transform (IIR-CQT) [4]. This
is a richer, multi-resolution time-frequency representation for
audio signals, which provides a greater frequency resolution at
low frequency and a higher time resolution at high frequency.
These ICMC features use longer windows of 128ms with 10ms
shift.

2.2. Segment representation

Speech segments and speaker clusters are represented by means
of the binary key speaker modelling. This technique was ini-
tially proposed for speaker recognition [5, 6] and applied to
speaker diarization [7], voice activity detection [8] and emotion
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Figure 1: Diagram of the cumulative vector (CV) and binary
key (BK) estimation procedure.

recognition [9]. The binary key representation has been well in-
vestigated for speaker diarization [8, 10, 7]. The principal goal
of that series of works was to perform fast, efficient speaker di-
arization with no need of external training data, while maintain-
ing a competitive performance. The method represents speech
segments as low-dimensional, speaker-discriminative binary or
integer vectors, which can be then clustered using similarity
measures. The core model to perform this mapping is a bi-
nary key background model (KBM) which is trained in the test
segment before diarization. The KBM is actually a collection
of diagonal-covariance Gaussian models selected from a pool
of Gaussians learned on a sliding window of duration 2s over
the test data. The window rate is adjusted dynamically to as-
sure a minimum of 1024 Gaussians. Then, a selection process
is performed to keep a percentage p = 10% of the Gaussians
in the pool to assure a good coverage of all the speakers in the
test audio stream by following the selection procedure described
in [7].

The KBM can be then used to map a sequence of acous-
tic features into a sparse, speaker-discriminativeD-dimensional
binary or integer vector, D being the size of the KBM, as de-
scribed in Figure 1. The procedure starts with a feature-level
binarisation. The i-th feature vector is evaluated against each
Gaussian in the KBM, producing a vector of likelihoods. Then,
the likelihood vector is mapped to a binary vector by setting
to 1 the NG positions of the top-NG likelihood in the likeli-
hood vector. This procedure is repeated for every feature vector
in the segment, obtaining a binary matrix of top-Gaussians per
feature. The next step is the accumulation of the binary matrix
by column-wise summation, resulting in a cumulative vector
(CV) which accounts for the number of times that each Gaus-
sian in the KBM has been activated (i.e. has produced an NG-
top likelihood) for the input feature sequence. The last step is a
segment-level binarisation by selecting the top M positions to
one while keeping the rest to zero. The obtained BK contains
the information of which Gaussians better represent the input
feature sequence. Full details of the algorithm can be found



in [7]. Submitted systems use NG = 5 and keeps the CV as the
final representation. CVs are estimated on the test stream using
a sliding window of 3s with a shift of 1s.

2.3. Speaker estimation

The estimation of the number of clusters is based on two dif-
ferent algorithms. For the baseline, the selection is performed
using an elbow criterion which is applied to the curve of the
within-class sum-of-squares (WCSS) of all clustering solutions,
with the goal of finding a trade-off between the number of clus-
ters and cluster dispersion, as presented in [10].

A proposed alternative is based on the spectral clustering
algorithm described in [11]1. This algorithm first estimates the
number of clusters and then performs the clustering. In this sec-
tion the speaker estimation part is explained. Given a test au-
dio file, represented by a sequence of segment CVs, the affinity
matrix (matrix of pair-wise segment similarities) is calculated
using the cosine similarity and refined by a series of operations,
including Gaussian blur with standard deviation σ, row-wise
thresholding of similarities below the p-percentile, symmetrisa-
tion, diffusion and row-wise Max normalisation (consult [11]
for full details). The refinement process smooths and denoises
the data in the similarity space. Then, eigenvalue decompo-
sition is performend on the processed affinity matrix. Being
λ1 > λ2 > ... > λn the decreasingly sorted eigenvalues, the
number of clusters k̃ is selected as the value k which maximises
the eigengap, defined as follows:

k̃ = arg max
1≤k≤n

λk

λk+1
(1)

Since the most frequently larger eigengap tends to be the first
one λ1/λ2, the algorithm returns 1 cluster for many files. For
this reason we forced the algorithm to return 2 or more clusters
by excluding the first eigengap. On the other end, the maxi-
mum number of speaker is restricted to 10 (this was decided
based on the maximum number of speakers seen on the develop-
ment set). Finally, having found that diarization errors in single-
speaker documents produce high error rates, we designed a spe-
cific mechanism for single-speaker detection. Single-speaker
detection is then performed according to the thresholding of the
eigengap between the two largest eigenvalues. In the case that
λ1 − λ2 exceeds a threshold θ, empirically set to 410, then the
number of clusters is set to 1.

2.4. Clustering

Two different approaches are explored for the clustering mod-
ules of the submitted systems. On the one hand, and as de-
scribed in [7], the AHC clustering, uses a bottom-up agglom-
erative clustering algorithm as follows. First, a number of clus-
ters Ninit = 25 is initialised by a uniform splitting of test data
and their CVs estimated. Then the segment CVs are compared
to the clusters’ CVs through the cosine similarity and assigned
to the closest one. If the number of clusters estimated by the
clustering selection module has been reached, the current clus-
tering solution is returned and the process stopped. Otherwise,
the two closest clusters are merged and the clustering process
repeated.

Alternatively, we experimented with the complete spectral
clustering algorithm [11] explained in the previous section for
the speaker estimation problem. Once the number of clusters k̃
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has been estimated, the k̃ eigenvectors corresponding to the k̃
largest eigenvalues are used as a new k̃-dimensional represen-
tation of the input segments, which are then clustered with a
k-means algorithm using the squared Euclidean distance.

2.5. Resegmentation

A resegmentation process is performed to refine time bound-
aries of the segments generated in the clustering step. It uses
Gaussian mixture models (GMM) to model the clusters, and
on maximum likelihood scoring at feature level. Since the
log-likelihoods at frame level are noisy, an average-smoothing
within a 1s sliding window is applied to the log-likelihood
curves obtained with each cluster GMM. Then, each frame is
assigned to the cluster which provides the highest smoothed
log-likelihood.

2.6. System definition

The systems submitted were numbered in a sequential manner
as additional modules were added, ranging from 1, for our base-
line, to 5, for our best performing system. The different sys-
tems are then defined by their particular implementations of the
acoustic frontend, clustering, and speaker estimation modules.
All of them use the same resegmentation module at the end of
the pipeline. The systems are defined as follows:

• SYSTEM 1: Based on the system described in [7], uses
a MFCC frontend, followed by AHC clustering, with the
number of speakers being estimated through the use of
the elbow criterion. The relative KBM size is p = 85%.
This setting was used in prior work and taken as a base-
line configuration.

• SYSTEM 2: Equivalent to SYSTEM 1, but employing
the proposed ICMC [2] frontend and a relative KBM
size of p = 10%. The new setting was found after a
grid search on the KBM size using ICMC features on an
oracle experiment where the optimum number of clus-
ters was chosen arbitrarily (i.e. the clustering solutions
which minimised the diarization error rate as a per-file
basis).

• SYSTEM 3: This system derives from SYSTEM 2 and
replaces the AHC clustering and the WCSS-elbow based
speaker estimation with the spectral clustering solution
described in Sections 2.3-2.4

• SYSTEM 4: It combines AHC clustering of SYS-
TEM 2 with the spectral speaker estimation module of
SYSTEM 3.

• SYSTEM 5: equivalent to SYSTEM 4, this system in-
cludes the single-speaker detection module described in
Section 2.3.

2.7. Hardware requirements

Submitted system do not require any special hardware. A regu-
lar desktop PC can be used. The execution times shown in Ta-
ble 1 were calculated on a desktop computer equipped with an
Intel i5-4440 CPU @ 3.10GHz, and 16 GB RAM. The systems
were implemented and run in Matlab R2017b using a parallel
pool of 4 workers to take advantage of all CPU cores. Table 1
shows execution times taken to each system to process the file
“DH 0024.wav” of the development set, measured in seconds as
as the real time factor (xRT), that is, the execution time divided
by the duration of the audio file. We show xRT of the complete



Table 1: Execution time to process the file ”DH 0024” of the
development, measured in seconds and as the total real-time
factor (xRT) and when excluding feature extraction.

Module time (s) xRT xRT (no feat. extract.)
SYSTEM 1 11.24 0.029 0.019
SYSTEM 2 5.94 0.059 0.010
SYSTEM 3 2.95 0.054 0.005
SYSTEM 4 5.91 0.059 0.010
SYSTEM 5 6.01 0.059 0.010

system and excluding feature extraction. Since ICMC feature
extraction is more computationally demanding than MFCC ex-
traction, xRT for SYSTEM 2-SYSTEM 5 are higher than for
SYSTEM 1. However, if we exclude the feature extraction
stage, it can be seen that SYSTEM 2-SYSTEM 5 are more ef-
ficient than SYSTEM 1. This is due to the use of a smaller
KBM size of p = 10% compared to SYSTEM 1 which uses a
baseline KBM size of p = 85%. This parameter dictates the di-
mension of the segment and cluster CV representations, which
has an impact on system speed. It is also seen that SYSTEM 3
using the spectral clustering algorithm is the most efficient one.
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