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Abstract
This paper describes the systems developed by the BUT team
for the first DIHARD speech diarization challenge. All our sys-
tems are based on our Bayesian Hidden Markov Model with
eigenvoice priors system.
Index Terms: Speaker Diarization, Variational Bayes, HMM,
i-vector, x-vector, Overlapped speech, DIHARD

1. Data resources
Two main training sets were used for training the systems sub-
mitted to the evaluation. The first set consists of (8 kHz mostly
telephone) data from NIST SRE 2004 - 2008 datasets, which
amounts to around 1400h of speech. We will denote this set as
(Tel). The second set consists on the data from DIHARD de-
velopment set[1, 2], excluding utterances coming from VAST,
as we found the labeling to be too noisy and experiments in
the development set proved that removing it from the training
set enhanced performance. We will denote this set with dev
acronym.

For some systems we made use of the DIHARD evaluation
data set in an unsupervised way, details on the specific use are
depicted in the system descriptions.

For the systems initialized with x-vectors (see later system
descriptions, i.e. 3.2), the x-vector extractor was trained on data
from NIST SRE 2004-2008, Fisher English and Switchboard.

2. Description of algorithm
Our main approach to the diarization problem is based on a
Bayesian Hidden Markov Model (HMM) with eigenvoice pri-
ors [3]. This model assumes that the sequence of speech fea-
tures representing a conversation is generated from a HMM,
where each state represents one speaker and the transitions be-
tween the states correspond to speaker turns. An ergodic HMM
is used, where transitions from any state to any state are possi-
ble. However, the transition probabilities are set in a way that
discourages too frequent transitions between states in order to
reflect speaker turns durations of a natural conversation. The
HMM state (or speaker) specific distributions are modeled by
Gaussian Mixture Models (GMMs) with an informative eigen-
voice prior imposed on the GMM parameters. Such prior, which
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is essentially the same as in i-vectors [4] or Joint Factor Analy-
sis (JFA) [5] models, allows us to robustly estimate speaker dis-
tributions, which facilitates discrimination between the speaker
voices in the input recording. The proposed Bayesian model
offers a elegant approach to SD as a straightforward and effi-
cient Variational Bayes (VB) inference in a single probabilis-
tic model addresses the complete SD problem: For each input
conversation, we construct a HMM with preferably more states
than what is the assumed number of speakers in the conversa-
tion and we start with some initial (possibly random) assign-
ment of frames to HMM states. Then, each VB training iter-
ation refines the HMM state specific distributions and recalcu-
lates the soft (probabilistic) assignment of frames to the HMM
states. During the VB training, the complexity control inher-
ent in the Bayesian learning automatically drops the redundant
HMM states (i.e. learns zero transition probabilities into such
states) and decides on the number of speakers in the conversa-
tion. The final assignment of frames to the “surviving” HMM
states gives the solution to the diarization problem. An open
source code for the algorithm is provided in [6] and more de-
tails on the algorithm can be found in [3]. In the rest of this
paper, we will refer to this approach as VB diarization.

Therefore, the VB diarization, as a single probabilistic
model, integrates the speaker estimation and clustering method
without the need for further resegmentation steps.

The VB diarization system can be initialized setting an up-
per bound on the number of speakers for the input utterance
and using a random assignment of frames to speakers. Also,
it can be initialized using a labeling attained with an external
diarization algorithm. We will include the description of the
initialization used in each of our submission.

3. System Descriptions
3.1. BASELINE (single submission)

This is our diarization system as described in [3]

Signal processing The Voice Activity Detection (VAD) us-
ing to process the Tel system training is based on the BUT Czech
phoneme recognizer [7], dropping all frames that are labeled as
silence or noise. The recognizer was trained on the Czech CTS
data, but we have added noise with varying Signal to Noise Ra-
tio (SNR) to 30% of the database.

Acoustic features HTK-based Mel Frequency Cepstral
Coefficients (MFCC), with 19 coefficients plus Energy ex-
tracted from 8kHz audios. The analysis window is 20ms with a
shift of 12ms.

System parameters For the speaker subspace of VB algo-
rithm We used GMM with 1024 Gaussians and i-vector extrac-
tor 400 dimensions trained in gender independent fashion using
the Tel training set defined in Section 1. The parameters used



for the VB algorithm were: statscale 0.1, loop probability 0.9,
min duration 1 and downsampling 25.

VB diarization initialization We initialize the VB diariza-
tion using the output a diarization system which works as fol-
lows [8]: each utterance is segmented into 2 second speech seg-
ments, overlapped by 0.5 seconds. A 1024 dimensional Gaus-
sian Mixture Model (GMM) is trained as a Universal Back-
ground Model (UBM). 64 dimensional i-vectors [4] are ex-
tracted from each segment and projected by means of Principal
Component Analysis to 3 dimensions [9]. The UBM and the
GMM are trained using also the Tel set. The generated i-vectors
are then clustered using Agglomerative Hierarchical Clustering
(AHC) using calibrated Probabilistic Linear Discriminant Anal-
ysis (PLDA) similarity scores. [10, 11].

Performance track1 35.85 %DER, 8.33 MI

3.2. dev-s2

Signal processing We used the Weighted Prediction Error
(WPE) [12] method to remove late reverberation from the data.
We estimated a dereverberation filter on Short Time Fourier
Transform (STFT) spectrum for every 100 second block of an
utterance. To compute the STFT, we used 32ms window with
8ms shift. We set the filter length and prediction delay to 20
and 3 respectively for 16 kHz, and 10 and 2 respectively for
8 kHz data. The number of iterations was set to 3.

Acoustic features Mel Frequency Cepstral Coefficients
(MFCC), with 19 coefficients plus Energy plus first order
derivatives extracted from 16kHz audios. The analysis window
is 20ms with a shift of 12ms.

System parameters For the speaker subspace of VB algo-
rithm, we used GMM with 512 Gausians and i-vector extractor
200 dimensions trained in gender independent fashion using the
dev training set as defined in Section 1. As unsupervised usage
of the evaluation data was allowed, the eval set was included in
the UBM training set. The parameters used for the VB algo-
rithm were: statscale 0.1, loop probability 0.9, min duration 1
and downsampling 25.

VB diarization initialization The approach used is based
also on the PLDA AHC described in Section 3.1, but uses
speaker embeddings instead of i-vectors.

To extract speaker embeddings, referred to as x-vectors, we
employed the architecture described in [13] (embedding A). We
trained the NN with the corresponding Kaldi recipe [14] except
that we used the data described in Section 1 in order to comply
with the rules of the DIHARD challenge. Also, we found that
not using augmented data in the PLDA training would benefit
the diarization task, so the training set was not augmented. Fi-
nally, we reduced the minimum number of utterances a speaker
needs to have in order to be included in the training set from 8
to 6.

The x-vectors were projected to 150 dimensions by LDA
with no length normalization and mean subtraction was applied
with mean computed over the PLDA training set subtracted.

Overlap handling Since the current diarization system out-
puts one speaker label per frame, a post processing of the output
was carried out. An overlapped speech detector was trained us-
ing three corpora in which overlaps are annotated: AMI[15] -
98h (1st microphone from 1st microphone array), Callhome -
17h (multi-lingual subset of train-sets), SRE08 test set - 186h

(LDC2011S08). The training data were selected to contain a
rich mixture of languages and domains. The model is a modi-
fied version of our VAD from Section 3.2. The difference is that
the NN has 3 outputs: ‘speech’, ‘non-speech’ and ‘overlapped
speech’. The per-frame score is the logit of posterior of ‘over-
lapped speech’ NN output. The rest is the same as for the VAD
described in 3.2: fbank+pitch feature front-end, 2 hidden-layer
NN topology and averaging of logit-scores over a window of 31
frames.

The detector was applied using two thresholds: one aggres-
sive and one precise. The aggressive threshold was used to fil-
ter out any overlapped speech in order to feed the first pass of
the VB algorithm only with reliable speech frames. Then, the
precise threshold was used to detect speech segments that are
overlapped speech with high probability. In a second pass of
the VB algorithm the speaker models were kept fixed and those
frames filtered out by the aggressive threshold but not by the
precise one were assigned to speaker models. We saw that this
approach helped the most for the noisiest domains on dev data.
Then, only the frames spotted by the precise detector were given
two speaker labels in order to reduce the false alarm rate. The
frames were tagged according to the following rules:

• If the neighboring frames are assigned to different speakers,
the overlap segment is assigned to those speakers.

• If only one of the neighboring segments is assigned to a
speaker (the other to silence), or both were assigned to the
same speaker, the overlap segment is assigned to that speaker
and to the next most likely speaker according to the diariza-
tion model output.

• If both neighboring segments were silence segments, the
overlap segment was assigned to the two most likely speakers
according to the diarization model output.

Source identification We built a subsystem that automat-
ically classify evaluation recordings according to the domains
given in the dev set. We found that the only domain dependent
strategy that generalized to the evaluation data was to detect
LibriVox recordings, which always contain one speaker and la-
bel them with a single speaker.

To classify domains, we trained a Gaussian Linear Classi-
fier (i.e. Gaussian distributed classes with shared covariance
matrix) on 64 dimensional i-vectors extracted from the whole
recordings. The i-vector extractor was trained on the Tel dataset
with addition of the LibriSpeech dataset [16]. The classifier was
trained on the development data and 150 randomly chosen files
from previously released Librivox data [17].

Voice Activity Detection (VAD) For the Track 2 of the
challenge, in which no golden segmentation labels were pro-
vided, a VAD system was used in order to discard silence and
feed the rest of the system only with speech segments. Our
VAD is based on a neural network (NN) trained for binary,
speech/non-speech, classification of speech frames. The 288-
dimensional NN input is derived from 31 frames of 15 log Mel
filter-bank outputs and 3 pitch features. The NN with 2 hid-
den layers of 400 sigmoid neurons was trained on the Fisher
English with labels provided from Automatic Speech Recogni-
tion alignment. Per-frame logit posterior probabilities of speech
were smoothed by averaging over consecutive 31 frames and
thresholded to at the value of 0 to give the final hard per frame
speech/ non-speech decision. See [18] for more detailed de-



scription of the VAD system.

Performance track1 25.39 %DER, 8.43 MI

Performance track2 35.51 %DER, 8.07 MI
We initialize the VB diarization using the output a diariza-

tion system which works as follows [8]: each utterance is seg-
mented into 2 second speech segments, overlapped by 0.5 sec-
onds. A 1024 dimensional Gaussian Mixture Model (GMM) is
trained as a Universal Background Model (UBM). 64 dimen-
sional i-vectors [4] are extracted from each segment and pro-
jected by means of Principal Component Analysis to 3 dimen-
sions [9]. The UBM and the GMM are trained using also the Tel
set. The generated i-vectors are then clustered using Agglom-
erative Hierarchical Clustering (AHC) using calibrated Proba-
bilistic Linear Discriminant Analysis (PLDA) similarity scores.
[10, 11].

3.3. dev-s4

Signal processing Dereverberation was applied as defined

in section 3.2.

Acoustic features HTK-based Mel Frequency Cepstral
Coefficients (MFCC), with 19 coefficients plus Energy ex-
tracted from 8kHz audios. The analysis window is 20ms with a
shift of 12ms.

System parameters For the speaker subspace of VB algo-
rithm We used GMM with 1024 Gaussians and i-vector extrac-
tor 400 dimensions trained in gender independent fashion using
the dev training set defined in Section 1. The parameters used
for the VB algorithm were: statscale 0.1, loop probability 0.9,
min duration 1 and downsampling 25.

VB diarization initialization In this case we did not use
an external clustering algorithm to initialize the VB algorithm,
instead we proceeded as follows: The golden segmentation was
applied and silence parts were removed from the signal. For the
remaining speech parts, a 5 second segmentation was applied,
with no overlap and a different speaker was assigned to every
segment.

Performance track1 29.94%DER, 8.39 MI

3.4. dev-s5

Similar to system dev-s2, with two main differences:

VB diarization initialization The initialization of the VB
algorithm was as defined for the BASELINE system, using i-
vectors instead of x-vectors.

Usage of evaluation data We re-trained the eigenvoice
subspace for the VB diarization on the pooled development and
evaluation data. However, this procedure required speaker la-
bels for the evaluation data, which were not available. We ob-
tained such labels in an unsupervised way as follows: the evalu-
ation data was labeled using 5 diverse diarization systems devel-
oped for this challenge using different features, initializations,
etc. The different sets of features in the 5 systems conveyed
19MFCC+E features, but extracted from/using: 8kHz denoised
data, 8kHz dereverberated data, 16kHz data plus deltas, 8kHz
data using global cepstral mean (CM) subtraction and 8kHz data
using 3s floating window cepstral mean and variance normaliza-
tion (CMVN). For each evaluation recording, the fused cluster
labels were given by concatenated frame speaker labels from

all systems, that is, with the resulting labels, frames would be-
long to the same cluster only if all the systems agreed on having
only one speaker in the cluster. We selected the largest clus-
ter as training data representing one speaker, we discarded all
frames/clusters that were believed to belong to the same speaker
by any of the system and we continued with the next largest
cluster.

Performance track1 26.46 %DER, 8.40 MI

3.5. dev-s6

Similar to dev-s5, but using the x-vectors for initialization.

Performance track1 25.07 %DER, 8.43 MI

Submission to second track This system was submitted
to the leaderboard for the second track (which achieved 35.35
%DER and 8.09 MI). After realizing that we were actually mak-
ing an indirect use of the golden segmentation, as we fuse 5 sys-
tems that use the golden segmentation to extract the evaluation
set labels, we requested to remove the system from the official
set of results.

4. Hardware requirements
The infrastructure used to run the expriments is a CPU, Intel(R)
Xeon(R) CPU 5675 @ 3.07GHz, with a total memory of 37GB.
The execution time of i-vector extraction process in a single
thread is of 18 times faster than real time (FRT) (computed
only on detected speech, would be 41FRT computed for whole
recordings including silence) for the MFCC system using 3GB
of memory respectively. PLDA Enrollment and scoring is neg-
ligible with respect to the i-vector extraction time.

Training the neural network for x-vector extraction took ap-
proximately 30h using up to 8 Nvidia GTI 1080 TI GPUs per
epoch (typically 2-4). Extraction of x-vectors for PLDA train-
ing and scoring was done with the Tensorflow library. Extract-
ing x-vectors from 2s chunks with 0.5s overlap plus scoring all
segments from the same recording against each other (with two
different normalizations) took 36min for the 164 recordings in
the development set using a single CPU thread. The total du-
ration of these recordings after VAD is 14.4h which means the
processing is approximately 24 FTR. Estimation of LDA and
PLDA training with x-vectors required around 80GB of mem-
ory and took around 15 minutes due to the large training set (all
3s chunks from the training set with no overlap).

In our experiments, the processing time of the VB diariza-
tion algorithm for 10 minute files (considering AHC from the
PLDA scores and VB diarization with overlap handling from
pre-extracted features), ranged between 17s and 50s (real time).
The processing time difference is because the VB algorithm
converging time is dependent on the number of speaker mod-
els it is initialized with.
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[18] P. Matějka and et.al., “BUT-PT system description for nist lre,”
in Proceedings of NIST Language Recognition Workshop 2017.
National Institute of Standards and Technology, 2017, pp. 1–6.


