
DIHARD - CPqD - System B1/B2

Valter A. Miasato Filho1, Diego A. Silva1, Luis Gustavo D. Cuozzo1

1CPqD, Campinas, Sao Paulo, Brazil
{valterf,diegoa,lcuozzo}@cpqd.com.br

1. Abstract
The B1/B2 CPqD diarization system is a combination of two
different neural networks, both with joint optimization for
speaker embedding learning, speech activity and overlap detec-
tion. The diarization system is a simple two-stage pipeline with
the network feed forward and segment generation via k-means
speaker clustering and a combination of SAD/overlap/speaker
labels for speech endpoint detection [1]. In contrast to prior
work, we switched recurrent for time-convolving layers, sepa-
rated SAD and speech overlap outputs, and devised a more sta-
ble training scheme by adding unit norm constraint and margin
in the loss function, and batch normalization in between layers.
The two networks differ by the usage of artificial prompts gen-
erated by isolated speaker datasets, as shown in section 3. Each
network was chosen by the task in which they performed best
in the test sets.

2. Development datasets
2.1. DIHARD development dataset

The DIHARD dataset has approximately 19 hours worth of 5-10
minute 16kHz, monaural prompts in 165 FLAC files, compris-
ing a variety of domains shown in Table 1. The collection of all
domains were split into training, validation, and test sets with
the respective approximate ratios of 50%, 25% and 25%, ensur-
ing that all domains were present under the three partitions.

2.2. Additional development datasets

We used the publicly available AMI [2] and ICSI [3] datasets as
additions to the provided development data from the DIHARD
challenge. Both datasets are composed of multi-party meeting
recordings, from which we used the headset mixes as monaural
data. The AMI corpus had poor quality in their original mix due
to the noise in some channels being louder than speech in oth-
ers, so we used the SoX tool [4] to apply dynamic range com-
pression and amplitude normalization in the individual chan-
nels before mixing. We split those datasets in training, vali-
dation and test sets in roughly estimated proportions of 80%,
10% and 10%, respectively. All three partitions have disjoint
sets of speakers. For augmenting our training set, we also used
the Voxceleb [5] set, which annotates celebrity speech in web
videos. The augmentation scheme is described in section 3.5.

2.3. DIHARD evaluation data

The evaluation data consists of around 21 hours of data with
the same characteristics of the development set, except by the
addition of a new domain, consisting of recordings from conver-
sations in restaurants. The same set was used in two different
tracks for the challenge: diarization from gold speech segmen-
tation (Track1) and diarization from scratch (Track2).

Table 1: Development datasets.

Domain Duration Speech% Ovp% Spk#

AMI 75:39:25 85.8 16.3 3 to 6

ICSI 71:41:12 85.6 15.2 3 to 10

DIHARD 18:56:50 76.1 6.3 1 to 10

SEEDLINGS 1:50:58 60.1 9.3 2 to 5
SCOTUS 2:04:46 84.0 1.6 5 to 10
DCIEM 2:29:58 68.5 2.0 2
ADOS 2:10:12 61.0 2.3 2 to 3

YP 2:03:25 78.5 1.0 3 to 5
SLX 2:00:26 72.4 5.7 2 to 6

VAST 1:50:20 85.7 11.8 1 to 9
RT04S 2:26:15 93.7 21.7 3 to 10

LIBRIVOX 2:00:30 79.4 0.0 1

3. Algorithm description
This section describes the algorithm for both networks, except
for section 3.4, which is only applicable for the B2 model, and
for section 3.6, where the usage of both is described.

3.1. Affinity matrix loss

The custom loss for speaker embedding generation, which is
inspired by [6] and [1], is defined by the following equation:

C(Y, V) =

T∑
i=1

T∑
j=1

max((|yi|vi • |yj |vj − yi • yj)2 −m, 0).

(1)
In which T is the number of timesteps from each train-

ing example, yi is the one-hot representation of speakers in
the frame i and vi is the embedding to be learned for the same
frame. The affinity matrix loss is used for learning the embed-
ding output depicted in Figure 1.

3.2. Neural network topology

Our network is comprised of seven time-convolving layers.
Each layer is described in Figure 1, with w standing for the
width of the convolution and d for the dilation. All layers
have D = 512 filters for convolution, and have ReLUs as non-
linearities. Batch normalization [7] is applied in between layers
for more stable training and faster convergence. To avoid fine-
tuning gradient descent parameters, the Adam optimizer [8] was
employed and gradients were clipped for having the maximum
norm of 1.

The outputs of the network are all connected to the last
layer with time-distributed weights. The embedding output is
a fully connected layer with K = 100 activations constrained

w=7 d=4

w=13 d=2

w=7 d=4

w=13 d=2

w=21 d=5

w=21 d=5

Distributed MLP

T

D

Embeddings

SAD

Overlap

SigmoidSigmoid

SigmoidK

w=3 d=2

Figure 1: Neural network topology.

by the sigmoid non-linearity. The final vectors are then divided
by their norm. The SAD and overlap outputs are both single
sigmoids for binary classification.

3.3. Training

The input of our network is the log spectrum of the audio
prompts in which speaker diarization is to be performed. We
chose a window of 25ms with a shift of 30ms to perform the
short-time Fourier transform. This configuration was inspired
by [9] and was used for faster learning and inference. The block
size in number of timesteps was T = 1024, which accounts for
roughly 30s of context.

For balancing speech activity and overlap data, we apply
sample weights based on a running ratio of the amount of posi-
tive/negative examples. The margin value for the affinity matrix
loss was set to m = 0.2.

We sample 512 batches of 64 examples from different files
through 200 iterations, each taking an average of 3880s to com-
plete. Intermediate models are saved with SAD, overlap and
DER metrics and we choose the best in each task to compose
the final system.

3.4. Artificial prompt generation

For generating the artificial prompts with the VoxCeleb [5]
dataset, we used a simple scheme of sampling at most 2 ut-
terances from a range of 3 to 10 speakers from the dataset. The
utterances were concatenated in prompts of length T and the
SAD/overlap outputs weights were set to 0 in these examples.
Only the B2 system used these examples for training.

3.5. Data augmentation

We applied two data augmentation techniques for our datasets:
noise addition in the AMI and ICSI datasets and noise suppres-
sion in the samples provided for the DIHARD challenge. The
noise addition was performed with the FaNT tool [10], using
external noise samples. We applied CHIME3 [11] samples over
AMI, and QUT-NOISE-TIMIT [12] samples over ICSI, both

with random signal-to-noise ratios between 5dB and 15dB. The
noise supression was used with the corresponding module from
the WebRTC project [13] in the DIHARD development set.

3.6. Diarization system

For the track 2 submission, we used the best iteration in terms
of SAD accuracy from the B1 system for generating the SAD
labels (only in track 2), and the best overall DER from the B2
system to generate the overlap labels and embeddings. We run
the mini-batch k-means for 2 to 10 clusters and choose the opti-
mal speaker count by using the silhouette score. All outputs are
then used in the speech endpoint algorithm from [1] to gener-
ate the final segments. The window size for the algorithm was
set to 30ms, which is the duration of a single frame from our
STFT.

4. Hardware description and timing
The models were trained on a 32 Intel® Xeon® E5-2686
@2.30GHz machine with Ubuntu OS 16.04 equipped with eight
instances of the NVIDIA Tesla K80 Graphics Processing Units
over Amazon (AWS) p2.8xlarge instance, with 480GB of avail-
able RAM. The training and development process was based
on the Keras framework with Tensorflow backend and NVIDIA
CUDA® 9.0 version. The floating point precision for running
the experiments was the default 32-bit precision from the toolk-
its.

In training time, each model was run on a single GPU, with
the feature extraction and batch generation steps processed on
shared CPUs. The GPU time was observed as the bottleneck of
the process. The total training time for each model was roughly
9 days, with the possibility of training a total of 8 systems at the
same time.

The benchmarked inference time over the full evaluation
set was computed over GPU processing. The usage of GPU
in this case was arguably suboptimal. To leverage its comput-
ing power in our pipeline, we chose to generate features for the
full duration of a single file prior to forwarding it through the
network. For processing the full pipeline over the evaluation
dataset, it took 26 minutes, from which 24 minutes were needed
for network feed-forwards (12 minutes each), and 2 minutes
were needed for 9 mini-batch k-means runs, silhouette score
computation and speech endpoint detection algorithm. Each
stage was run in all files from the evaluation set before running
the next one.

For benchmarking a single file, we chose a regular desk-
top machine with a dual-core Intel® Core™ i3-6100 @3.7 GHz
with 8GB of RAM. In this scheme, we generated features and
feed-forwarded them on demand through the networks to avoid
excessive RAM consumption. Our test file had 44 minutes of
duration. The intermediate feature files held 32MiB worth of
disk storage. The full pipeline took 3min 00s with a peak RAM
consumption of 1250MiB.

5. References
[1] V. A. Miasato Filho, D. A. Silva, and L. G. D. Cuozzo, “Multi-

objective long-short term memory neural networks for speaker di-
arization in telephone interactions,” in 2017 Brazilian Conference
on Intelligent Systems (BRACIS). IEEE, 2017, pp. 181–185.

[2] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot,
T. Hain, J. Kadlec, V. Karaiskos, W. Kraaij, M. Kronenthal et al.,
“The ami meeting corpus: A pre-announcement,” in Interna-
tional Workshop on Machine Learning for Multimodal Interac-
tion. Springer, 2005, pp. 28–39.

[3] A. Janin, D. Baron, J. Edwards, D. Ellis, D. Gelbart, N. Morgan,
B. Peskin, T. Pfau, E. Shriberg, A. Stolcke et al., “The icsi meet-
ing corpus,” in Acoustics, Speech, and Signal Processing, 2003.
Proceedings.(ICASSP’03). 2003 IEEE International Conference
on, vol. 1. IEEE, 2003, pp. I–I.

[4] L. Norskog and C. Bagwell, “Sox-sound exchange,”
http://sox.sourceforge.net/, 2013, version 14.

[5] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb:
a large-scale speaker identification dataset,” arXiv preprint
arXiv:1706.08612, 2017.

[6] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep clus-
tering: Discriminative embeddings for segmentation and separa-
tion,” in Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on. IEEE, 2016, pp. 31–35.

[7] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional conference on machine learning, 2015, pp. 448–456.

[8] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[9] D. Povey, V. Peddinti, D. Galvez, P. Ghahrmani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neu-
ral networks for ASR based on lattice-free MMI,” Submitted to
Interspeech, 2016.

[10] H. G. Hirsch, “Fant: filtering and noise adding tool,” Niederrhein
University of Applied Sciences, http://dnt.-kr. hsnr. de/download.
html, 2005.

[11] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third
‘chime’speech separation and recognition challenge: Dataset, task
and baselines,” in Automatic Speech Recognition and Understand-
ing (ASRU), 2015 IEEE Workshop on. IEEE, 2015, pp. 504–511.

[12] D. B. Dean, S. Sridharan, R. J. Vogt, and M. W. Mason, “The qut-
noise-timit corpus for the evaluation of voice activity detection
algorithms,” Proceedings of Interspeech 2010, 2010.

[13] A. B. Johnston and D. C. Burnett, WebRTC: APIs and RTCWEB
protocols of the HTML5 real-time web. Digital Codex LLC,
2012.

