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1. Abstract
The CPqD hybrid diarization system was comprised of the
LIUM diarization toolkit using data-driven, neural network
speech activity detection (SAD). The LIUM diarization system
is a four-stage pipeline, in which we add a fifth stage with our
SAD mask. The final pipeline is then composed of:

• Speaker change point detection,

• Speaker clustering,

• Viterbi re-segmentation,

• Re-clustering,

• Neural network SAD masking.

The pipeline parameters concerning the LIUM toolkit were
meta-optimized via recursive and genetic algorithms, and our
SAD model was chosen by evaluating the best accuracy over
the validation data between multiple intermediate models, as
shown in section 3.

2. Data resources
2.1. DIHARD development dataset

The DIHARD dataset has approximately 19 hours worth of 5-10
minute 16kHz, monaural prompts in 165 FLAC files, compris-
ing a variety of domains shown in Table 1. The collection of all
domains were split into training, validation, and test sets with
the respective approximate ratios of 50%, 25% and 25%, ensur-
ing that all domains were present under the three partitions.

2.2. Additional development datasets

We used the publicly available AMI [1] and ICSI [2] datasets as
additions to the provided development data from the DIHARD
challenge. Both datasets are composed of multi-party meeting
recordings, from which we used the headset mixes as monaural
data. The AMI corpus had poor quality in their original mix due
to the noise in some channels being louder than speech in oth-
ers, so we used the SoX tool [3] to apply dynamic range com-
pression and amplitude normalization in the individual chan-
nels before mixing. We split those datasets in training, valida-
tion and test sets in roughly estimated proportions of 80%, 10%
and 10%, respectively. All three partitions have disjoint sets of
speakers.

2.3. DIHARD evaluation data

The evaluation data consists of around 21 hours of data with
the same characteristics of the development set, except by the
addition of a new domain, consisting of recordings from conver-
sations in restaurants. The same set was used in two different
tracks for the challenge: diarization from gold speech segmen-
tation (Track1) and diarization from scratch (Track2).

Table 1: Development datasets.

Domain Duration Speech% Ovp% Spk#

AMI 75:39:25 85.8 16.3 3 to 6

ICSI 71:41:12 85.6 15.2 3 to 10

DIHARD 18:56:50 76.1 6.3 1 to 10

SEEDLINGS 1:50:58 60.1 9.3 2 to 5
SCOTUS 2:04:46 84.0 1.6 5 to 10
DCIEM 2:29:58 68.5 2.0 2
ADOS 2:10:12 61.0 2.3 2 to 3

YP 2:03:25 78.5 1.0 3 to 5
SLX 2:00:26 72.4 5.7 2 to 6

VAST 1:50:20 85.7 11.8 1 to 9
RT04S 2:26:15 93.7 21.7 3 to 10

LIBRIVOX 2:00:30 79.4 0.0 1

3. Algorithm description
3.1. LIUM

Our speaker clustering system was based on LIUM [4] diariza-
tion system with Gaussian Mixture Models (GMMs) trained
for each cluster (speech/non-speech) composed of 32 Gaus-
sians with diagonal covariance. Universal Background Models
(UBMs) were adapted for each cluster to obtain models for its
speakers with 64 diagonal components each.

A four-step pipeline was used: Bayesian Information Crite-
rion (BIC) speaker change point detection, BIC speaker cluster-
ing, Viterbi re-segmentation and Cross-Likelihood Ratio (CLR)
re-clustering. Each step had its own set of parameters to extract
features, described in [5].

Meta-optimizing was used for the large quantity of hyper
parameters present in the LIUM diarization system subsystem.
Recursive and genetic algorithms were used to search for near-
optimal solutions [6, 7], evaluated against the validation parti-
tion of DIHARD dataset for DER minimization. This optimiz-
ing was run in three times and each taking an average of 24
hours to complete.

3.2. Neural network topology

Our network is comprised of seven time-convolving layers.
Each layer is described in Figure 1, with w standing for the
width of the convolution and d for the dilation. All layers
have D = 512 filters for convolution, and have ReLUs as non-
linearities. Batch normalization [8] is applied in between layers
for more stable training and faster convergence. To avoid fine-
tuning gradient descent parameters, the Adam optimizer [9] was
employed and gradients were clipped for having the maximum
norm of 1.

The outputs of the network are all connected to the last layer
with time-distributed weights. The embedding output is a fully
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Figure 1: Neural network topology.

connected layer with K = 100 activations constrained by the
sigmoid non-linearity, and its cost function is derived from [10].
The final vectors are then divided by their norm. The SAD and
overlap outputs are both single sigmoids for binary classifica-
tion.

Only the SAD output was relevant for this system.

3.3. Neural network training

The input of our network is the log spectrum of the audio
prompts in which speaker diarization is to be performed. We
chose a window of 25ms with a shift of 30ms to perform the
short-time Fourier transform. This configuration was inspired
by [11] and was used for faster learning and inference. The
block size in number of timesteps was T = 1024, which ac-
counts for roughly 30s of context.

For balancing speech activity and overlap data, we apply
sample weights based on a running ratio of the amount of posi-
tive/negative examples. The margin value for the affinity matrix
loss was set to m = 0.2.

We sample 512 batches of 64 examples from different files
through 200 iterations, each taking an average of 3880s to com-
plete. The intermediate model with the best SAD accuracy was
used for composing the hybrid system.

3.4. Data augmentation

We applied two data augmentation techniques for our datasets:
noise addition in the AMI and ICSI datasets and noise suppres-
sion in the samples provided for the DIHARD challenge. The
noise addition was performed with the FaNT tool [12], using
external noise samples. We applied CHIME3 [13] samples over
AMI, and QUT-NOISE-TIMIT [14] samples over ICSI, both
with random signal-to-noise ratios between 5dB and 15dB. The
noise supression was used with the corresponding module from
the WebRTC project [15] in the DIHARD development set.
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Figure 2: System diagram.

4. Diarization system
The diagram of the hybrid system is described in Figure 2,
which is composed by the LIUM pipeline and speech activity
segments from the trained neural network. Segments were gen-
erated with the SAD output, and no smoothing was applied.

5. Hardware Description and Timing
The models were trained on a 32 Intel(R) Xeon(R) CPU E5-
2686 @ 2.30GHz machine with Ubuntu OS 16.04 equipped
with eight instances of the NVIDIA Tesla K80 Graphics Pro-
cessing Units over Amazon (AWS) p2.8xlarge instance. The
training and development process was based on the Keras
framework with Tensorflow backend and NVIDIA®CUDA 9.0
version. The floating point precision for running the experi-
ments was the default 32-bit precision from the toolkits.

In training time, the neural network was run on a single
GPU, with the feature extraction and batch generation steps pro-
cessed on shared CPUs. The GPU time was observed as the bot-
tleneck of the process. The total training time for a single model
was roughly 9 days, with the possibility of training a total of 8
systems at the same time.

The benchmarked inference time over the full evaluation
set was computed over GPU processing. The usage of GPU in
this case was arguably suboptimal. To leverage its computing
power in our pipeline, we chose to generate features for the full
duration of a single file prior to forwarding it through the net-
work. The feed forward step took 12 minutes to complete over
the evaluation set in this scheme.

LIUM inference process was run in CPU and the processing
time in DIHARD evaluation dataset:

• All stages: 11min

For benchmarking a single file, we chose a regular desk-
top machine with a dual-core Intel® Core™ i3-6100 @3.7 GHz
with 8GB of RAM. In this scheme, we generated features and
feed-forwarded them through the network to avoid excessive
RAM consumption. Our test file had 44 minutes of duration.
The intermediate feature files held 32MiB worth of disk stor-
age. The full pipeline (LIUM + DNN) took 2min 22s with a
peak RAM consumption of 700MiB. The mask process took
approximately 5 seconds.
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