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Abstract
CRIM is taking part in both the diarization from scratch and
from gold speech segments for the first DIHARD speech di-
arization challenge. For diarization, we used our diarization
system developed internally. We did not have time to use di-
arization systems readily available over the internet.

For track2, our internal diarization system uses a deep neu-
ral net (DNN) for voice activity detection trained from MGB-3
challenge data. The output of voice activity detector is then
used as ground truth to adapt the voice activity detector to the
DIHARD challenge data. The adapted VAD is then used for
final voice activity detection. The speech segments from the
voice activity detector are then segmented into homogeneous
segments. These segments are then clustered using BIC clus-
tering, followed by GMM-based clustering as outlined in [1].
Preliminary results show that we get 33.8% DER on the eval
set with the gold speech segments, and 52.4% with diarization
from scratch.
Index Terms: Deep Neural Networks, DNN, voice activity de-
tection, speaker diarization.

1. Data Resources
For the DIHARD challenge, we trained the voice activity de-
tector (VAD) with acoustic training data from the MGB-3 chal-
lenge English data for 2017/2018 challenge [2]. This acoustic
training data provided by MGB challenge committee contains
lightly supervised alignments based on the transcripts from
closed captioning. As a measure of confidence, they also com-
puted phone matched error rates (PMER) and word matched er-
ror rates (WMER) [3]. The total acoustic data available is 500
hours of audio. These BBC broadcast audio contains shows
from many different genres.

For training the male/female GMMs for diarization, we
used the 114 files from 1997 Hub4 English broadcast news
(LDC98S71) training data (97 hours in total). These audio
files were chosen because they have been well segmented into
speaker turns.

2. Detailed Description of the Algorithm
2.1. Overview

The diarization algorithm is similar to the one outlined in [1].
In that system, we divided the audio into speech, noise and mu-
sic segments by training GMMs for the corresponding sounds.
Here, we replaced it by a DNN-based voice activity detector
(VAD) trained on roughly 140 hours of audio. The rest of the
algorithm is similar to that described in [1]:

The audio segments labeled as speech (from VAD) are
then divided into homogeneous segments using a change point
detector. The acoustic change point detection step (CPD)
uses a symmetric Kullback-Leibler (KL2) metric, and a 13-
dimensional feature vector (12 MFCCs + energy) with diag-

onal covariance matrix [4]. This is followed by an iterative
Viterbi re-segmentation stage that models each segment by its
mean and variance and finds the optimal boundaries between
segments. The resulting segments are clustered using BIC ag-
glomerative clustering that uses a 13-dimensional feature vec-
tor (12 MFCCs + energy) with full covariance matrix [5]. In
this step, the clustering threshold is set so as to under-cluster
the segments. The Viterbi re-segmentation and BIC-clustering
steps are iterated twice. The next stage is gender determina-
tion, which labels each cluster from the previous step as male
or female using male/female GMMs trained using the Hub4
acoustic data. The next step is separate male/female speaker
identification-style (SID) clustering that uses more complex
models of the clusters for final clustering. For this step, we use
Gaussianized MFCCs with cepstral mean subtraction, and sepa-
rate male/female GMMs generated from the Hub4 data. We did
not adapt the GMMs to either the DIHARD dev set or the eval
set for this GMM based agglomerative clustering.

2.2. Voice Activity Detection

Cambridge University had successfully used DNN-based VAD
for MGB-1 challenge [6]. To reduce VAD errors (false alarms
+ missed speech), we tried two different architectures for neu-
ral net based VAD: DNN architecture similar to that used in [6]
with varying number of input frames, and a bidirectional LSTM
with 1 to 3 levels. We also tried two different feature parame-
ters: 40-dim MFCCs, and 40-dim MFCCs with senone posteri-
ors added to them. The senone posteriors were generated from
a bidirectional LSTM with 178 senones as outputs. To train
these VAD DNN models, we tried different training sets. In the
first training set, we aligned all the speech segments with zero
PMER. The segments aligned to words were labeled as speech
and the rest as non-speech. This resulted in 20 million speech
frames and only 2 million non-speech frames. The resulting 3-
level LSTM gave poor results on MGB-3 dev set due to many
music and noise segments being recognized as speech. So we
added many more non-speech frames for training in order to
balance the speech/non-speech discrimination.

We noticed in the MGB-3 training data (with lightly aligned
supervision) that intervals between speech segments with closed
captioning were mostly silence or music. So we added all such
segments as non-speech. Including all these frames increased
the non-speech frames to 31 million frames, 1.5 times the num-
ber of speech frames. DNN trained from 20 million speech,
31 million non-speech frames gave good results on the MGB-3
dev set. Also, DNNs gave lower VAD error than LSTMs. The
best DNN has 81-frames of MFCC features as input, 5 hidden
layers, with 2000, 500, 500, 500, and 200 output nodes respec-
tively. The softmax layer has 2 outputs (speech/non-speech).

Speech/non-speech detection using this DNN is as follows:
We first label each frame as speech or non-speech based on
DNN posterior likelihoods. Consecutive speech frames are
merged into one segment. Segments with less than 0.3 sec si-



lence in between are merged. Isolated segments less than 0.2
secs are discarded. Also, DNNs with MFCCs + senone poste-
riors as input gave lower VAD error for MGB-3 dev set than
DNNs with MFCCs only as input. However, for the DIHARD
dev set, DNNs without senone posteriors as input gave lower
VAD error than DNNs with MFCCs + senone posteriors as in-
put. So we report results with DNNs trained from MFCCs only.

Since the DNN for VAD was not trained on DIHARD data,
we also adapted this DNN separately on DIHARD dev and eval
sets using a small learning rate of 0.000006 and 1 epoch of train-
ing with this DIHARD data. The resulting adapted DNNs gave
us a small reduction in the VAD error rate.

3. RESULTS
We participated in both track1 (diarization from gold segmenta-
tion) and track2 (diarization from scratch) in order to compare
our algorithms with those of other research labs. In both di-
arization from gold segments and diarization from scratch, the
diarization is sensitive to the threshold δ [5] used for stopping
the clustering process in SID (speaker identification-style) ag-
glomerative clustering using GMMs. So we varied this thresh-
old in order to get an optimal value.

3.1. Diarization from Gold Segmentation

The results for the dev set for different values of δ are shown in
Table 1. From the table we notice that even with gold segmenta-
tion, we get significant voice activity detection errors (11.5%).
This is probably due to the overlapped speech. So looks like di-
arization systems should also include speech overlap detection.

Table 1: DER for dev set using gold segmentation with varying
thresholds for δ.

δ False Alarm missed speech DER
-0.25 0.4 11.1 28.7
-0.20 0.4 11.1 28.2
-0.15 0.4 11.1 28.2
0.0 0.4 11.1 29.3

Table 2 shows DER for the eval set using gold segmentation
as scored by the DIHARD diarization committee. The DER for
the eval set is around 5% worse than that for the dev set. The
lowest DER for the eval set is 23.7% by JHU.

Table 2: DER for eval set using gold segmentation with varying
values for δ.

δ DER
-0.15 33.8
-0.10 33.8

3.2. Diarization from Scratch

Diarization from scratch uses a voice activity detector (VAD-
DNN) to remove non-speech segments before diarization. Ta-
ble 3 shows DER for the dev set with/without adaptation of the
VAD DNN to the dev set. The VAD error before adaptation is
30.2%, while after adaptation it is 28.3%. So we gain 1.9% with
VAD adaptation. However, after diarization, we loose all these
gains because of the differences in the speaker error. Maybe we

should have adapted VAD with thresholds that lead to lower FA
rates.

Table 3: DER for diarization from scratch for dev set using
varying thresholds for δ.

δ VAD False Alarm missed speech DER
-0.5 no adapt 10.7 19.5 47.1

-0.25 no adapt 10.7 19.5 45.7
0.0 no adapt 10.7 19.5 48.0

0.25 no adapt 10.7 19.5 59.8
-0.30 adapt 14.5 13.8 45.7
-0.25 adapt 14.5 13.8 45.9
-0.20 adapt 14.5 13.8 46.2

Table 4 shows the DER for eval set for diarization from
scratch. Both the CRIM submissions used VAD adapted to the
eval set. Compared to the dev set, the DER for the eval set is
6.7% higher. The lowest DER on eval set is 35.5% by BUT.

Table 4: DER for eval set using diarization from scratch and
VAD adapted to eval set with varying thresholds for δ.

δ DER
0.25 68.3
-0.10 52.4

4. Hardware Requirements
CRIM has 8 compute servers with 2 GPU’s each. The operating
system is linux centos 7, with cpu Intel(R) Xeon(R) CPU E5-
2620 v4 @ 2.10GHz. Each compute server has 16 CPU’s, 256
Gbytes of RAM, and 2 NVIDIA TITAN X (Pascal) GPU’s. The
GPU’s were only used for adapting the VAD.

Adaptation of the VAD DNN to dev or eval set takes ap-
proximately 31 minutes with 1 GPU. However, this adaptation
is done only once for all the Dev set audio files or all the eval
set audio files. The adaptation of VAD DNN was done using
the Kaldi toolkit.

Voice activity detection with VAD-DNN is done once for
dev or eval set. The primary computing is calculation of VAD-
DNN posteriors. For the dev set, it took 2 minutes and 47 sec-
onds (on 1 CPU) to compute these posteriors. Since there are
164 dev audio files, it takes roughly 0.65 secs per file to com-
pute the VAD posteriors.

We only used 1 CPU for diarizing each file. Diarization of
each 5 minute file took less than a minute. The software for
diarization was developed at CRIM.
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