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1. Abstract
This document describes the Intelligent Voice (IV) speaker di-
arization system for the first DIHARD challenge. The aim
of this challenge is to provide an evaluation protocol to as-
sess speaker diarization on more challenging domains with the
speech across a wide array of challenging acoustic and envi-
ronmental conditions. We developed a new frame-level speaker
diarization built on the success of deep neural network based
speaker embeddings, known as d-vectors, in speaker verifica-
tion systems. In contrary to acoustic features such as MFCCs,
frame-level speaker embeddings are much better at discerning
speaker identities. We perform spectral clustering on our pro-
posed LSTM-based speaker embeddings to generate speaker
log likelihood for each frame. A HMM is then used to refine
the speaker posterior probabilities through limiting the proba-
bility of switching between speakers when changing frames.

2. Data resources
Switchboard corpora (LDC2001S13, LDC2002S06,
LDC2004S07, LDC98S75, LDC99S79) which consists of
conversational telephone speech data from around 2.5k speak-
ers were used to train our LSTM-based neural network. We
had limited time to extend the training of our system on larger
corpora and with challenging domain, however, reasonable
results has been obtained using only these corpora.

3. Detailed description of algorithm
3.1. Acoustic features

For speech parameterization we used 40-dimensional filter-
bank features. These features are extracted at 8kHz sample fre-
quency using Librosa toolkit with 32 ms frame length and 10
ms overlap. For each utterance, the features are centered using
a short-term (3s window) cepstral mean and variance normal-
ization (ST-CMVN).

3.2. Frame-level embeddings

The i-vector based systems have been the dominating approach
for both speaker verification and diarization applications. How-
ever, with the recent success of deep neural networks, a lot of
efforts have been made into learning fixed-dimensional speaker
embeddings (d-vectors) using an end-to-end network architec-
ture that could be more effective relative to i-vectors on short
segments [1, 2, 3, 4]. We employed a generalized end-to-end
model using an LSTM-based neural network [2]. The network
architecture is shown in Fig 2. It consists of a stacked bi-
directional LSTM with a projection layer. The LSTM layers
map the input sequence of feature vectors into a sequence of
speaker embeddings. An average layer followed by a length-
normalization layer can produce a fixed dimensional represen-
tation for the input segment. Training is based on processing a
large number of utterances in the form of a batch that contains

Figure 1: System diagram for the proposed diarization system.

N speakers, and M utterances. Each utterance could be of arbi-
trary duration. But to train the network in batch, they need to
be of the same duration. To handle this we zero pad each seg-
ment to a fixed duration and then use a masking value to skip
zero time-steps. This way we can train the network on variable
length speech segments. We used variable length speech seg-
ments ranging from 3-5 seconds without overlap and construct
batches with 60 speakers, each having 10 different segments.
In the loss layer, a generalized end-to-end (GE2E) loss builds a
similarity matrix that is defined based on the cosine similarity
between each pair of input utterances. During the training, we
want the embedding of each utterance to be similar to the cen-
troid of all that speaker’s embeddings, while at the same time,
far from other speakers’ utterances. A detailed description of
GE2E training can be found at [3].

In the test phase, we remove the average as well as the



Figure 2: LSTM-based neural network architecture used to extract frame-level speaker embeddings.

length-normalization layer to produce frame-level embeddings
as shown in Fig 2. The whole test utterance will be fed into the
network to produce a sequence of speaker embeddings corre-
sponding to each frame of the input (for long utterances we use
a sliding window of 20 seconds long with 10 seconds overlap
and average the results). A Speech Activity Detection (SAD)
may be used to feed only the speech portion of the utterance to
the network. In our experiment with conversational telephone
speech, the word boundaries generated by an ASR is used as
speech segments. Due to the fact that the network is trained
on length-normalized average of frame-level embeddings, we
incorporate a sliding window of a few frames to average and
length-normalize each frame. Our experiments indicates that a
window of 30-50 frames produces the best performance. Fi-
nally, a principle component analysis (PCA) is incorporated to
reduce the dimensions of the resulting length-normalized em-
beddings (we used 5 dimension in our experiments) so as to be
ready for clustering.

3.3. Speaker estimation

To estimate the number of clusters a simple heuristic based on
the eigenvalues of the affinity matrix is used [5].

3.4. Clustering method

We employed a spectral clustering which is able to handle
unknown cluster shapes. It is based on analyzing the eigen-
structure of an affinity matrix. A more detailed analysis of the
algorithm is presented in [6]. We used an Euclidean distance
measure to form a nearest neighbor affinity matrix on the frame-
level embeddings. To mitigate the computational complexity of
the spectral clustering, especially when the number of frames
are too large, we can employ sampling at a specific rate.

3.5. Re-segmentation details

The clustering algorithms are typically followed by a re-
segmentation algorithm that refines the speaker transition
boundaries. This could be either in the feature space like MFCC
or in the factor analysis subspace [7]. Speaker diarization in fac-
tor analysis space allows us to take advantages of speaker spe-
cific information. However, the effectiveness of this technique
is proportional to the length of the speech segment and thus
is not suitable for spontaneous speech scenario, especially in
conversational speech with fast speaker turn changing. By con-
trast, lower-level acoustic features such as MFCCs are not quite
as good for discerning speaker identities, but can only provide

sufficient temporal resolution to witness local speaker changes.
The proposed framework for diarization provides a stronger
speaker representation at the frame level, making it more suit-
able for spontaneous speech with fast speaker turn changes. As
a result, when combined with an HMM to refine the speaker
posterior probabilities through limiting the speaker transitions
[7], the system is able to detect very short turn changes. The
speaker log likelihoods for the HMM are computed by the spec-
tral clustering algorithm as described in the previous section.

4. Hardware requirements
We used two Intel Xeon CPU (E5-2670 @ 2.60GHz and 8
cores), 64G of DDR3 memory, 200G disk storage and an
NVIDIA TITAN X GPU (12G of memory) to train our network.
We used keras API with tensorflow backend for system devel-
opment. Training time takes almost a week to process around
half a million segments of 3-5 seconds long. To process a single
10 minute recording the system execution times is 17 seconds,
that is more than 35 times faster than real time on multi-core
CPU and GPU.

5. Conclusions
We proposed a frame-level speaker diarization framework that
operates in the deep neural network embedding space. We
found that, spectral clustering algorithm followed by an HMM
to constrain the speaker transitions, contributes to the success
of this framework.

We evaluated our proposed approach the first DIHARD di-
arization evaluation challenge data. Both the development and
evaluation data focus on diarization on challenging corpora.
Our system was trained on a small set of conversational speech
data which totally differs from both the development and eval-
uation data. This is due to the limited access to the training
data proposed by the evaluation plan and limited time to train
the network on more corpora. We obtained a diarization error
rate of 32.15% and 36.73% on the DIHARD development and
evaluation sets. However, the results indicate the effectiveness
of the proposed approach on challenging domains.
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