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Abstract

This document describes the submissions of STAR-LAB (the
Speech Technology and Research Laboratory at SRI Interna-
tional) to both track 1 and track 2 of the DiHard 2018 chal-
lenge. The core components of the submissions included noise-
robust speech activity detection including domain detection,
speaker embeddings for initializing diarization as well as post-
diarization linking, and variational Bayes (VB) diarization us-
ing two DNN bottleneck MFCC i-vector subspaces.

1. Introduction

SRI International has long focused on the task of speaker recog-
nition, but has only recently branched into the field of speaker
diarization. Our submissions attempt to leverage recent work in
speaker embeddings for speaker recognition [1, 2, 3] the well-
known variational bayes (VB) approach to diarization [4], and
the fusion of two DNN bottleneck based i-vector subspaces in-
ternal to the VB process. We describe three systems being our
baseline VB approach, the hybrid embeddings-VB approach,
and finally the use of an additional system via fusion in the VB
clustering process.

2. System Training and Development Data

Table 1 shows the databases used to train the SAD model.
The clean speech data from RATS is composed of several lan-
guages: English, Urdu, Pashto, Farsi and Levantine Arabic;
source audio has been drawn from LDCs Fisher English and
Fisher Levantine Arabic corpora, plus new conversational tele-
phone speech (CTS) data collected specifically for RATS. A to-
tal of 402.8 hours of source audio was processed for this task;
the 8 transceiver channels yielded over 3222 hours of retrans-
mitted audio. Overall, roughly 45% of the audio content is
speech. The music used to pollute the clean speech is non-vocal
and it is mainly composed of jazz and classical tracks. finally,
we excluded the cafe noise from QUT noises to pollute the clean
speech. Also the databases used to train the UBM and the total
variability subspaces as well as the speaker embeddings system
are shown in the same table. Details of each system are given
in the following section.

3. The STAR-LAB System Submissions

We start with a general overview of each submission prior to
breaking down into details of each module used in the submis-
sions. Figure 1 shows a block diagram of the different parts of
our submissions.

1. Baseline: Use of the BNiv; system in traditional VB
diarization

2. Hyb-BN-Emb: Embeddings soft clustering as seed to

Table 1: Databases used for SAD training models

System Databases
LDC HAVIC database

SAD Clean speech from RATS SAD with music
Clean speech from RATS SAD with QUT noises
Noisy channel from RATS SAD

Embeddings PRISM (NIST SRE’04-08)

BN Extractor Fisher, Switchboard, AMI
UBM-IV PRISM (NIST SRE’04-08)

VB diarization prior to embeddings-based speaker link-
ing.

3. Hyb-Multi: Same as Hyb-BN-Emb with the use of both
BNiv; and BNivy in VB diarization fused at the speaker
posterior level after each iteration.

3.1. Acoustic Features and Bottleneck i-vector extraction

We have used the Mel Frequency Cepstral Coefficients for our
submissions. We extracted 80-dimensional bottleneck (BN)
features from two different DNNs; only the the Hyb-Multi sys-
tem leveraged both BN extractors.

For BNivi, a DNN was trained to predict 1933 English tied
tri-phone states (senones). MFCCs were used for input to the
DNN after transforming them with a pcaDCT transform [5]
trained on Fisher data, and restricting the output dimension to
90. The DNN consisted of 5 hidden layers of 600 nodes, except
the last hidden layer which was 80 nodes and formed the bottle-
neck layer from with activations were extracted as features.

The BNiv, features were similarly extracted from a DNN
trained to predict 3k English senones, used a larger hidden layer
size of 1200 nodes, but had more traditional input features being
Log Mel Spectra of 40 dimensions, stacked across 15 frames.

Each set of BN features the above DNNs were used to train
an i-vector extractor [6] consisting of a 2048-component uni-
versal background model (UBM) with diagonal covariance and
a subspace of rank 400.

3.2. Domain Dependent Speech Activity Detection

We leverage a deep neural network-based SAD system in our
submissions. These systems use a DNN trained to predict the
posterior of the speech and non-speech classes at the output
layer. The posteriors are converted into log-likelihood ratios
(LLRs) by using Bayes rule, assuming equal priors for both
classes. In a final step, these LLRs are smoothed by averag-
ing their values over a rolling window (31 frames long in our
case). The final SAD decisions are made by thresholding these
LLRs. The DNN has three hidden layers with five hundred neu-
rons each.
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Figure 1: Flow diagram of components used in the STAR-LAB team submissions to the DiHard 2018 challenge. The paths of data flow

for the three different submissions are given.

Regarding the threshold, development experiments on track
2 highlighted that the best SAD threshold was highly domain
dependent, being -1.5 and 0.5 split equally between the develop
set domains. This was an important finding since SAD errors
are folded into DER for track 2 submissions. We therefore im-
plemented a simple domain detection approach in which devel-
opment i-vectors from the BNiv; system were used to train a
Gaussian backend (as used in language identification) for each
domain. The development and evaluation i-vectors were then
used to predict the domain from which they originated and the
appropriate SAD threshold used. The model detects the set cor-
rectly 92% of the time in development data.

In the case of track 1 submissions, we determine the out-
put of our SRI SAD system, and remove any frames detected as
speech that are marked as non-speech in the provided speech an-
notations. These frames are used for diarization on high quality
speech. The speech not detected by the SRI SAD system that
is labeled as speech in the annotations is later labeled using a
HMM and Viterbi alignment after VB diarization has been per-
formed.

3.3. Embeddings VB Initialization

Recent work in [1, 2] has shown significant advances in the
related field of speaker recognition by replacing the i-vector
extraction process with speaker embeddings extracted from a
DNN trained to directly discriminate speakers. We decided to
apply our findings on what makes a good speaker embeddings
extractor [3] to the task of speaker clustering.

The model involves five frame-level hidden layers of 512
or 1500 nodes, a statistics pooling layer and two segment-level
hidden layers of 512 nodes. Apart from the statistics pooling
layer, hidden layers were based on a rectified linear unit (ReLU)
activation and batch normalization, and the first three layers in-
cremented time context in the network. In our submissions, we
have used embeddings to seed the VB and to link speakers for
the final alignment.

More specifics on the embeddings system can be found
in [3] where the system used in this evaluation is referred to
as raw+CNLRMx4. This system used PLDA classification for
clustering and speaker linking.

The embeddings VB initialization process was performed
as follows. The audio was first segmented into 1.5 second seg-
ments with 0.2 second shift. SAD was applied and segments
with less than 0.15 seconds of speech were discarded. Follow-
ing a similar strategy to VB diarization, we initialized a speaker
cluster posterior matrix, g, to for 6 speakers. We calculated for
each speaker cluster, a weighted-average embedding based on
q and the 1.5s embeddings segments. These per-cluster embed-
dings were compared using PLDA against each individual em-
bedding segment. We scaled the likelihood ratios (LLRs) that
resulted from PLDA by 0.05 and performed Viterbi decoding of
the LLRs to result in a new g and speaker priors. This process
was iterated 8 times before using the result ¢ and speaker priors
in the subsequent VB diarization based on BN+MFCC features.

3.4. Variational Bayes diarization

We have implemented a frame-level diarization in a i-vector
subspace [4, 7] where the statistics have been computed using
a space given by concatenated BN+MFCC features [8]. With
VB diarization, we have used a left-to-right HMM structure of
three states per speaker in order to smooth the transitions be-
tween speakers that was proposed in [9].

With the exception of the Baseline system, the initialization
of the VB diarization approach is done with the speaker poste-
riors estimated from the speaker embeddings initialization. We
performed a maximum of 20 iterations of VB diarization.

In the case of our Hyb-Multi submission, we developed a
parallel VB diarization scheme in which two i-vector subspaces
were used and the speaker posterior matrix for each was av-
eraged after each iteration. This allowed each subspace to start
from the same point after each iteration and maintain soft-fusion
of information within the VB process.



Table 2: Evaluation results for each system submission

System Name DER MI
Baseline - Track1 30.56% 8.27
Hy-BN-Emb - Trackl 2798% 8.33
Hyb-Multi - Trackl 27.61% 8.33
Baseline - Track2 4520% 71.79
Hy-BN-Emb - Track2 41.83% 7.87
Hyb-Multi - Track2 41.56% 7.87

Table 3: Computational requirements of STAR-LAB submis-
sions from based on RT factor (higher than 1.0 is slower than
real time), and maximum resident memory needed to diarize the
10m 53s development file DH_0083 flac.

System x RT Max. Res. RAM
Baseline 0.59 3.45G
Hybrid 0.96 4.25G
Multi-Hybrid 1.27 5.06G

3.5. HMM Alignement of Missing Speech

As mentioned previously, the speech not detected by the SRI
SAD system that is labeled as speech in the annotations was not
use in the VB diarization process. Instead, it was labeled using
a HMM and Viterbi alignment after VB diarization had been
performed to ensure SAD errors were not counted in our track
1 submission.

3.6. Embeddings Speaker Linking

We noted during development that several single-speaker files
were split into several clusters. This was due to an over clus-
tering problem, which tended to only occur in the one or two
speaker files. To aid in linking these same-speaker clusters
together, we employed a straight-forward embeddings PLDA
speaker recognition system. The following process was iter-
ated: Audio from each cluster was used to extract a corre-
sponding embeddings; an exhaustive comparison of these em-
beddings was performed; if the maximum score was above a
threshold of 20.0, the two clusters were merged, otherwise the
process stopped.

4. Results

This section compares development and evaluation perfor-
mance of the STAR-LAB submissions.

Table 2 shows the system performances for both track 1 and
track 2 for the eval set. Note how the use of the BN features into
the VB diarization reduce the DER in a 10% relative respect
the baseline system for both tracks. However, the system Hyb-
Multi is the best system in terms of DER also for both tracks.

5. Computation

We benchmarked the computation requirements of each of the
STAR-LAB submissions on a single core. The machine was
an Intel Xeon E5-2760 Processor operating at 2.6GHz. The
approximate processing speed and resource requirements are
listed in Table 3.

These calculations are based on total CPU time divided by
the total duration of of the audio.
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