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Abstract

Our submitted systems for the first DIHARD challenge con-
sist of several important modules of speech denoising, speech
activity detection (SAD), i-vector design, and scoring strategy.
One main contribution is the proposed long short-term memory
(LSTM) based speech denoising model, which has been shown
significant improvements over state-of-the-art diarization sys-
tems in highly mismatch conditions. The best diarization error
rates (DERs) of our results on evaluation dataset are 24.56%
and 36.05% , respectively in Track1 and Track2.

1. Database
A complete diarization system contains multiple sub-systems
in charging of different aspects. In the section, we introduce all
datasets for subsystems. First for speech enhancement, we have
already explored its validity for realistic environments in [1].
Unlike only using English speech corpus WSJ0 [2], in this work
we add 50-hour Chinese speech corpus from 863 Program to
increase the diversity of clean speech data. Like WSJ0, the Chi-
nese speech corpus is also reading-systle and recorded in quiet
environment.

115 noise types are adopted here, including 100 noise types
recorded in [3] and 15 home-made noise types. All clean speech
files are corrupted with the above mentioned 115 noise types
at three SNR levels (-5dB, 0dB and 5dB) to build a 400-hour
training set, consisting of pairs of clean and noisy utterances.

Speaking of i-vector extractor, we choose the increasingly
popular VoxCeleb corpus [4] to train the i-vector extractor
based on universal background model (UBM). It is a large scale
speaker identification dataset derived from YouTube, contain-
ing over 100,000 utterances for 1,251 celebrities. Moreover, we
use another home-made corpus in iFlytek, which contains about
5,800 hours data from more than 38,000 persons. It is expected
to provide enough data diversity which can enhance the perfor-
mance of our residual CNN-based i-vector extractor.

For SAD training, 600-hour home-made realistic speech
data in iFlytek was used. The speech quality is not very stable
due to the complicated acoustic environments. Human annota-
tions on each speech segment are set as the learning target.

The details of development set and evaluation set in DI-
HARD challenge can refer to [5, 6, 7].

2. System Description
The generic speaker diarization system often contains several
main components: speech denoising, acoustic feature extrac-
tion, speech activity detection, speaker representation, speaker
segmentation, speaker clustering and re-segmentation. In this

section, we introduce each part in our system, as illustrated in
Figure 1.

2.1. Speech denoising

Inspired by our previous work [8, 9], we adopt an advanced
LSTM architecture with the novel design of hidden layers via
densely connected progressive learning and output layer via
multiple-target learning, as shown in Figure 2. The overall
LSTM architecture aims to predict the clean log-power spec-
tra (LPS) features and reference ideal ratio masks (IRMs) given
the input noisy log-power spectra (LPS) features with acoustic
context. All the target layers are designed to learn intermediate
speech with higher SNRs or clean speech. For the input and
multiple targets, LSTM layers are used to link between each
other. This stacking style network can learn multiple targets
progressively and efficiently. In order to make full use of the
rich set of information from the multiple learning targets, we
update the progressive learning in [9] with dense structures [10]
in which the input and the estimations of intermediate target are
spliced together to learn next target. Then, a weighted MMSE
criterion in terms of multitask learning (MTL) is designed to
optimize all network parameters randomly initialized with K
target layers as follows:
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and ΛIRM are corresponding versions to IRM targets. αk is the
weighting factor for kth target layer.
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Figure 1: Complete speaker diarization system diagram in both Track1 and Track2.
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Figure 2: A comparison of spectrograms for the proposed en-
hancement models with different training data setups.

2.2. Speech activity detection

Here we train a framewise binary classification DNN of speech
and non-speech. The features we use are 39-dimensional per-
ceptual linear prediction (PLP) features (13-dimensional static
PLP features with ∆ and ∆∆) and include an input context
of 5 neighbouring frames (±2), yielding a final dimensionality
of 195 (39 × 5). Considering utility efficiency, the DNN model
adopts a small and compact structure using 2 hidden layers with
256 and 128 hidden units in each layer and a final dual output
layer, i.e. an architecture of 195-256-128-2. All training data is
from realistic collected corpus.

2.3. Speaker segmentation and clustering

To fully utilize the effective information embedded in every
stage, we propose a two-pass short-long term diarization sys-
tem in this section.

2.3.1. Short-term diarization

Given the valid speech segments from SAD, it is important to
split them into speaker homogeneous segments. It is also piv-
otal to prevent error accumulating in the very beginning. We use
the Bayesian information criterion (BIC) [11] as the hypothesis
testing metric. Then a global agglomerative hierarchical clus-

tering (AHC) algorithm [12] is performed on all segments. At
this step, every single segment is relatively short. The process is
conducted iteratively, until a certain criterion is reached, upon
which one separate cluster should arrive an upper limit or the
number of clusters reaches a default maximum speaker number.

2.3.2. Long-term diarization

When the duration of each segment is relatively long, the i-
vector can be a more powerful representative feature. We use an
i-vector extraction system where the UBM includes 1024 Gaus-
sians and the total variability (TV) matrix reduces the dimen-
sion to 400. The i-vectors are denoted as UBM i-vectors. Then
all i-vectors are global mean subtracted, whitened, and length-
normalized, then a PLDA scoring model is trained to measure
the similarity between the i-vectors. In clustering, we repeat-
edly merge the closest two i-vectors based on a default PLDA
score metric. Moreover, we retrain the UBM i-vector/PLDA
model using the denoising data.

2.3.3. Residual CNN-based i-vector extractor

We train a residual CNN network for i-vector which is shown
in Figure 3. For the input layer, 512 frames of 64 dimensional
filterbank features which belong to the same person are grouped
together as a feature map. At output layer, a 512 dimensional
vector is generated as the identity vector of the specific person.
During the first stage in training, we pre-train the network by
predicting the speaker identity using softmax loss. Then triplet
loss [13] is used as the second stage training criterion. Similar-
ities between different CNN i-vectors are measured by cosine
score.

2.3.4. Realignment

At the end, a realignment over frames is performed via Viterbi
decoding on the GMM of each speaker. To make it more stable,
we also use some smoothing strategy to prevent erroneously de-
tected speaker turns [14].

3. Hardware Requirements
For models which need to be trained, several open-source
tools are used for specific usage. First the computational net-
work toolkit (CNTK) [15] was used for training our denoising
model. Training one whole epoch needs 10 hours on a NVIDIA
GeForce 1080Ti GPU card while we trained it for 30 epoches.
CNN-based i-vector extractor are trained on Caffe [16], which
needs 4 days on a NVIDIA GeForce M40 GPU card. As for the
UBM/PLDA model, we use Hadoop [17] platform to shorten
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Figure 3: The architecture of the residual CNN i-vector model.

Table 1: DER comparison of different speech inputs for UBM
i-vector based diarization system on development set.

DER(%) Track1
Speech Miss FA SpkrErr Overall
Original 8.50 0 11.76 20.26
Denoised 8.50 0 11.18 19.68
Retrained 8.50 0 11.01 19.51
DER(%) Track2
Speech Miss FA SpkrErr Overall
Original 18.60 6.10 8.50 33.20
Denoised 16.50 6.00 7.90 30.40
Retrained 16.50 6.00 7.60 30.10

the training time in only 4 hours. All other related tools are
written and efficiency optimized in C++. For a 10 minutes
recording, the diarization from scratch needs approximately 22
seconds.

4. Experiments Evaluation
4.1. Evaluation metric

We measure the performance of the diarization system by DER,
which is defined by the evaluation campaigns organized by
NIST. It compares the differences between the ground-truth ref-
erence segmentation and the generated diarization output. The
final DER result is the sum of three types of errors: EMiss, EFA

and ESpkr, where each represents the percent of missed speech,
false alarm error speech, and speaker misclassification error
speech, respectively. Lower DER indicates better diarization
performance. Note that, for DIHARD challenge, non-scoring
collar is not permitted which means collar is set to zero in scor-
ing script. Moreover, multiple speakers in overlap speech seg-
ments are counted.

Table 2: DER comparison of different scoring strategies on de-
velopment set.

DER(%) Track1
Scoring Miss FA SpkrErr Overall
PLDA 8.50 0 11.01 19.51

PLDA+Cosine 8.50 0 8.90 17.40
DER(%) Track2
Scoring Miss FA SpkrErr Overall
PLDA 16.50 6.00 7.60 30.10

PLDA+Cosine 16.50 6.00 6.90 29.40

Table 3: DER results of different scoring strategies on evalua-
tion set.

DER (%) Track1 Track2
PLDA 24.96 36.39

PLDA+Cosine 24.56 36.05

4.2. Results on Development Set

First, we build a baseline speaker diarization system based
on UBM i-vector extractor and PLDA model, which are both
trained upon original VoxCeleb data. In Track1, we only use
the gold speech segmentation, while Track2 uses the outputs
of DNN-based SAD. As shown in Table 1, the DER on de-
velopment set can benefit directly from denoised speech from
20.26% to 19.68% in Track1. Note that, our system does not
tackle with overlap speech segments. That is to say, all overlap
segments will be distributed to only one speaker, which gener-
ates inevitable missed error in both Tracks. Specifically, Miss
is 8.5% in Track1 while FA is 0 with gold segmentation. In
Track2, denoised speech can significantly reduce the percentage
of Miss and FA, due to the removal of environmental interfer-
ences. Moreover, the valid speech segments can be less confus-
ing, in terms of the reduction of SpkrErr. Furthermore, by re-
training the i-vector extractor and PLDA model using denoised
training data, additional improvements could be observed for
both Track1 and Track2 as shown in the third row of each track.

System fusion [18, 19] is an effective strategy to im-
prove the performance of speaker diarization system, includ-
ing feature-level fusion [20], system output-level fusion [21],
and multi-model fusion like audio-visual fusion [22]. To fully
utilize the complementarity between UBM i-vector and CNN
i-vector, in our fusion system we directly conduct a scoring fu-
sion between PLDA score of UBM i-vector and cosine score of
CNN i-vector. Comparing to single PLDA scoring, the fusion
method obtains relative SpkrErr reductions of 19.2% in Track1
and 9.2% in Track2, respectively.

4.3. Results on Evaluation Set

Due to the limitation of uploading times each day, parameters
are tuned on development set and then applied to evaluation
data. Perfomance on both datasets has approcimately same ten-
dency, but also has some differences. The results are shown in
Table 3, the fusion method still can improve the performance
but not as much as it on development set. This is partly because
the parameters concerning the fusion process are very sensitive
to data distributions, so proper parameters on evaluation set are
not well found.

Besides the overall best results on evaluation set, here we
briefly introduce the differences of all our submitted systems on



the challenge leaderboard [23], in order to provide more prac-
tical experimences. For Track 1, all these systems use the de-
noised speech:

• System1 intends to find method to do system fusion be-
tween PLDA score of UBM i-vector and CNN i-vector
score, and finally achives the DER of 24.56%;

• System2 indicates a pure CNN i-vector based system,
and achives the DER of 25.67%;

• System4 indicates an UBM i-vector based PLDA score
system, and achives the DER of 24.96%;

• System3 is taken to adjust front-end stategy, but we up-
load wrong files by mistake and gets an exceptional re-
sult with the DER of 36.14%.

While in Track 2, the experimental route is not completely
the same.

• System1 uses the original speech without front-end pre-
processing, and achives the DER of 38.99%;

• System2 uses denoising model and UBM i-vector based
PLDA score for clustering, and finally achives the DER
of 36.39%;

• System3 intends to try some fusion methods between
original speech and denoised speech in the front-end
stage. The performance always can not exceed using
only denoised speech. One of attempts yield the DER
of 36.56%;

• System4 intends to tune score fusion strategy with
only denoised speech, and finally achieves the DER of
36.05%.

Through we can not make sure all the final performance
represents the best ability of every single system, current re-
sults are still meaningful. A method using front-end prepro-
cessing and back-end score fusion yields the best results. Also,
it’s obviously observed that the performance gap between each
system is too small to notice in real applications. The biggest
the problem is still waiting to be solved, such as overlap detec-
tion, overlap attribution.
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