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Abstract

This paper introduces the third DIHARD challenge, the third in
a series of speaker diarization challenges intended to improve
the robustness of diarization systems to variation in record-
ing equipment, noise conditions, and conversational domain.
Speaker diarization is evaluated under two segmentation con-
ditions (diarization from a reference speech segmentation vs.
diarization from scratch) and 11 diverse domains. The domains
span a range of recording conditions and interaction types, in-
cluding read audiobooks, meeting speech, clinical interviews,
web videos, and, for the first time, conversational telephone
speech. We describe the task and metrics, challenge design,
datasets, and baseline systems for speech speech activity detec-
tion and diarization.
Index Terms: speaker diarization, speaker recognition, robust
ASR, noise, conversational speech, DIHARD challenge

1. Introduction
Speaker diarization, often referred to as “who spoke when”,
is the task of determining how many speakers are present in
a conversation and correctly identifying all segments for each
speaker. In addition to being an interesting technical challenge,
it forms an important part of the pre-processing pipeline for
speech-to-text [1] and is essential for making objective mea-
surements of turn-taking behavior. Early work in this area was
driven by the NIST Rich Transcription (RT) evaluations [2],
which ran from 2002 to 2009. In addition to driving substantial
performance improvements, especially for meeting speech, the
RT evaluations introduced diarization error rate (DER), which
remains the principal evaluation metric in this area.

After the RT evaluation series ended in 2009, diarization
continued to improve (e.g., i-vectors, x-vectors, PLDA scor-
ing), though until quite recently there was no common task for
diarization, resulting in a fragmented research landscape where
individual groups focused on different datasets or domains (e.g.,
conversational telephone speech [3, 4, 5, 6, 7], broadcast [8, 9],
or meeting [10, 11]), often with slightly differing evaluation
methodologies. At best, this has made comparing performance
difficult, while at worst it may have engendered overfitting to in-
dividual domains/datasets, resulting in systems that do not gen-
eralize. Moreover, the majority of this work has evaluated sys-
tems using a modified version of DER in which speech within
250 ms of reference boundaries and overlapped speech are ex-
cluded from scoring. As short segments such as backchannels
and overlapping speech are both common in conversation, this
may have resulted in an over-optimistic assessment of perfor-

mance even within these domains1 [12].
Recently, there has been renewed interest in a diarization

common task to facilitate systematic benchmarking. Whereas
from 2009-2017 there were no major evaluations with a di-
arization component, there now is an annual diarization specific
evaluation – DIHARD – as well as numerous other challenges
that include a diarization component; among others, the Fear-
less Steps series [13, 14], the Iberspeech-RTVE challenge [15],
CHiME-6 [1], and VoxSRC-202.

The first DIHARD challenge (DIHARD I) [16] ran in the
spring of 2018 and evaluated diarization of single channel wide-
band recordings drawn from a diverse range of domains. As
expected, state-of-the-art systems performed poorly, with final
DER on the evaluation set for the top systems ranging from
23.73% [17] when provided with reference speech activity de-
tection (SAD) marks to 35.51% [18] when forced to perform
diarization from scratch – error rates rates more than double the
state-of-the-art for CALLHOME [19] at the time [5, 6]. This
was followed by DIHARD II [20, 21] in 2019, which was even
more successful, attracting 50 teams from 17 countries and 4
continents. While DIHARD II continued the single channel di-
arization tracks from DIHARD I, it also collaborated with the
CHiME challenge series with the addition of two new tracks fo-
cusing on conversational speech from multiple farfield micro-
phone arrays during a dinner party scenario. All tracks con-
tinued to be challenging for participants, with the tracks that
required systems to produce their own speech segmentation and
dinner party data particularly challenging. In the case of the lat-
ter, the CHiME-6 data, DER of the best performing system was
over 45% when provided with an oracle speech segmentation
and over 58% when required to produce its own segmentation.

The third DIHARD challenge (DIHARD III), which builds
upon DIHARD I and II, addresses the problem of robust diariza-
tion; that is, diarization that is resilient to variation in, among
others, conversational domain, recording equipment, recording
environment, reverberation, ambient noise, number of speakers,
and speaker demographics. Like its predecessors, diarization
system performance is evaluated under two SAD conditions:
diarization from a supplied reference SAD and diarization from
scratch. There are no constraints on training data, with partici-
pants allowed to use any combination of public/proprietary data
for system development. Recordings are sampled from 11 de-

1See, for instance, the release of IBM’s diarization API in 2017.
The feature worked well for simple cases, but when run by users on
real inputs, the performance was found to be lacking, especially for
overlaps, back-channels, and short turns.

2http://www.robots.ox.ac.uk/˜vgg/data/
voxceleb/competition2020.html



manding domains ranging from clean, nearfield recordings of
read audiobooks to extremely noisy, highly interactive, farfield
recordings of speech in restaurants to clinical interviews with
children. Unlike DIHARD II, diarization from multi-channel
audio is not evaluated; parties interested in this condition should
instead consult the results from track 2 of CHiME-6 [1], which
is essentially a rerun of the DIHARD II multichannel condition.

In the remainder of this paper, we introduce the task (Sec-
tion 2), metrics (Section 3), and data (Section 4), as well as the
baseline SAD and diarization systems (Section 5). Results of
the baseline systems for both tracks are reported in Section 5.2.
More details may be found in the evaluation plan [22] and on
the challenge website:

https://dihardchallenge.github.io/dihard3/

2. Task
The goal of the challenge is to automatically detect and label
all speaker segments for each recording; that is: i) determine
how many speakers are present; ii) for each speaker identify all
corresponding speech segments. Because system performance
is strongly influenced by the quality of the speech segmentation
used, two different tracks are covered:

• Track 1 – Diarization from reference SAD. Systems are
provided with a reference speech segmentation that is
generated by merging speaker turns in the reference di-
arization.

• Track 2 – Diarization from scratch. Systems are pro-
vided with just the raw audio input for each record-
ing session and are responsible for producing their own
speech segmentation.

3. Performance Metrics
As in DIHARD I and II, the primary metric is DER [2], which is
the sum of missed speech, false alarm speech, and speaker mis-
classification error rates. Because systems are provided with the
reference speech segmentation for track 1, for this track DER
exclusively measures speaker misclassification error. This is
the metric used to rank systems on the leaderboards. For each
system we also compute a secondary metric, Jaccard error rate
(JER), originally introduced for DIHARD II. JER is based on
the Jaccard similarity index [23, 24], a metric commonly used
to evaluate the output of image segmentation systems, which is
defined as the ratio between the sizes of the intersections and
unions of two sets of segments. An optimal mapping between
speakers in the reference diarization and speakers in the system
diarization is determined and for each pair the Jaccard index of
their segmentations is computed. JER is defined as 1 minus the
average of these scores, expressed as a percentage.

All metrics are computed using version 1.0.1 of the dscore
tool3 without the use of forgiveness collars and with scoring of
overlapped speech. For further details, please consult Section 4
of the DIHARD III evaluation plan [22] and the dscore repo.

4. Datasets
4.1. Overview

The development and evaluation sets consist of selections of 5-
10 minute duration samples drawn from 11 domains exhibiting
wide variation in recording equipment, recording environment,

3https://github.com/nryant/dscore

Table 1: Overview of DIHARD III datasets. The Part. col-
umn indicates the partition (core or full), while the % speech
and % overlap columns indicate, respectively, the percentage
of speech/overlapped speech in the partition.

Set Part. # rec # hours % speech % overlap

dev core 181 23.94 78.43 10.04
full 254 34.15 79.81 10.70

eval core 184 22.73 77.35 -
full 259 33.01 79.11 -

ambient noise, number of speakers, and speaker demographics.
These domains range in difficulty from the trivial, read audio-
books recorded under clean conditions by a single speaker, to
the extremely challenging, conversations between up to 6 diners
recorded by a binaural microphone in restaurants with varying
room acoustics and noise levels. Both adult and child speech
(e.g., ADOS interviews) are represented as is speech from mul-
tiple languages (English and Chinese). For the first time, nar-
rowband recordings are included as well as wideband record-
ings; in the narrowband case, all recordings are drawn from
the unreleased Phase II calls from the Fisher English collec-
tion conducted as part of the DARPA EARS project. All audio
is distributed via LDC as 16 kHz, monochannel FLAC files.

The datasets are summarized in Table 1. For additional de-
tails about the domains and source drawn on for each domain,
consult the DIHARD III evaluation plan [22].

4.2. Scoring partitions

For DIHARD III, we define two partitions of the evaluation
data:

• core evaluation set – a “balanced” evaluation set in
which the total duration of each domain is approximately
equal

• full evaluation set – a larger evaluation set that uses all
available selections for each domain; it is a proper super-
set of the core evaluation set

The core evaluation set strives for balance across domains so
that the evaluation metrics are not dominated by any single do-
main. It mimics the evaluation set composition from DIHARD I
and II. The full evaluation set includes additional material from
two domains (clinical interview and CTS), potentially resulting
in more stable metrics at the expense of being unbalanced. All
system submissions to all tracks are scored against both sets and
the results reported on the leaderboards.

4.3. Annotation

Reference diarization was produced by segmenting the record-
ings into labeled speaker turns according to the following guide-
lines:

• split on pauses > 200 ms, where a pause by speaker “S”
is defined as any segment of time during which “S” is
not producing a vocalization of any kind4

• attempt to place boundaries within 10 ms of the true
boundary, taking care not to truncate edges of words
(e.g., utterance-final fricatives or utterance initial stops)

4Vocalization is defined as any noise produced by the speaker by
means of the vocal apparatus; e.g., speech (including yelled and whis-
pered speech), backchannels, filled pauses, singing, speech errors and
disfluencies, laughter, coughs, breaths, lipsmacks, and humming.



• where close-talking microphones exist for each speaker,
perform the segmentation separately for each speaker us-
ing their individual microphone

Reference SAD was then derived from these segmentations by
merging overlapping speech segments and removing speaker
identification.

During DIHARD II, it was found that manual annotation
to this spec required use of highly skilled and experienced an-
notators using multiple spectrogram displays, making the anno-
tation extremely slow and costly. Many annotators were inca-
pable of performing the task even after extensive training and
the remainder found it extremely laborious with real time rates
typically greater than 15X and sometimes exceeding 30X. Con-
sequently, for DIHARD III we abandoned a commitment to en-
tirely manual segmentation. Where a manual segmentation to
these specs already existed (i.e., files annotated for DIHARD
II), we used it. For all other data we instead produced a care-
ful turn-level transcription, then established boundaries using a
Kaldi-based forced aligner.

5. Baseline system
5.1. Speech activity detection

The baseline for track 2 uses a TDNN SAD model based on
the Kaldi Aspire recipe (“egs/aspire/s5”). 40-D mel frequency
cepstral coefficients (MFCCs) extracted every 30 ms using a 25
ms window are fed into a neural network consisting of 5 TDNN
layers [25] followed by 2 statistics pooling layers [26]. The
network context is set to approximately 1 second (left context:
0.8 sec; right context: 0.2 sec). The DNN was trained with
two classes – speech and non-speech – with labels at training
time derived from the reference speech segmentation for the
DIHARD III DEV set. Training utilized the entire DIHARD
III DEV set and was continued for 40 epochs. During infer-
ence, the posteriors of the model were converted to pseudo-
likelihoods using the empirical speech/non-speech priors for the
DEV set and Viterbi decoding was performed using an HMM
with the following constraints: minimum speech duration: 240
ms, minimum non-speech duration: 30 ms.

5.2. Diarization

The diarization baseline is based on LEAP Lab’s submission to
DIHARD II [27]. The system performs diarization by divid-
ing each recording into short overlapping segments, extracting
x-vectors [28, 29], scoring with probabilistic linear discrimi-
nant analysis (PLDA) [30], and clustering using agglomerative
hierarchical clustering (AHC) [31]. The AHC ouput is then
refined using Variational Bayes Hidden Markov Model (VB-
HMM) [32, 33] with posterior scaling [27]. The trained models
and recipes for both tracks are distributed through GitHub5.

The x-vector extractor configuration is identical to that of
[17, 29] with two exceptions: i) 30-D MFCCs are used instead
of a mel filterbank; ii) the embedding layer uses 512 dimen-
sions. MFCCs are extracted every 10 ms using a 25 ms window
and mean-normalized using a 3 second sliding window. For
training we use a combination of VoxCeleb 1 and VoxCeleb 2
[34, 35] augmented with additive noise and reverberation ac-
cording to the recipe from [28]. Segments under 4 seconds du-
ration are discarded, resulting in a training set with 7,323 speak-
ers. Reverberation is added by convolution with room responses

5https://github.com/dihardchallenge/dihard3_
baseline/

Table 2: Baseline SAD results for the core/full DEV and EVAL
sets. The Part. columns indicates whether scoring was per-
formed using the full or core DEV/EVAL set.

Set Part. Miss (%) FA (%) Overall error (%)

dev core 1.84 3.98 2.30
full 1.88 4.55 2.42

eval core 4.97 15.07 7.26
full 4.35 14.65 6.51

from the RIR dataset [36], while additive noises are drawn from
the MUSAN dataset [37]. At test time, x-vectors are extracted
from 1.5 sec segments with a 0.25 sec shift. x-vectors are cen-
tered and whitened using statistics estimated from the DIHARD
III development set, followed by length normalization [38] .

The x-vectors are then clustered using AHC and a similar-
ity matrix produced by scoring with a Gaussian PLDA model
[30]. The PLDA model was trained using centered, whitened,
and length normalized x-vectors extracted from VoxCeleb seg-
ments with duration ≥3 sec. Prior to PLDA scoring, dimension-
ality reduction was performed using conversation-dependent
PCA [4] preserving 30% of the total variability. For each track,
the stopping criteria for AHC was tuned to minimize DER on
the DEV set.

We then refine the AHC output using frame-level Varia-
tional Bayes Hidden Markov Model (VB-HMM) resegmenta-
tion as described by [32, 33]. 24-D MFCCs are extracted every
10 ms using a 15 ms window; neither mean nor variance nor-
malization are applied, nor do we use delta coefficients. We
use a Universal Background Model (UBM-GMM) with 1,024
diagonal-covariance components and a total variability (V) ma-
trix containing 400 eigenvoices. Both the UBM-GMM and V
were trained using the same data as for the x-vector extractor.
Following [27], posterior scaling was applied to discourage fre-
quent speaker transitions by the VB-HMM. This scaling was
accomplished by boosting the zeroth order, but not first or sec-
ond order, statistics prior to VB-HMM likelihood computation.
The VB-HMM is initialized separately for each recording from
the result of AHC and run for one iteration. Parameters were
set to the following values by tuning on the DIHARD III DEV
set: scaling factor β = 10, loop probability Ploop = 0.45,
downsampling factor downSamp = 25.

Table 3: Track 1 diarization results for the core/full DEV and
EVAL sets with and without VB-HMM resegmentation.

Part. VB-HMM reseg. DER (%) JER (%)
Dev Eval Dev Eval

core no 21.05 21.66 46.34 48.10
core yes 20.25 20.65 46.02 47.74
full no 20.71 20.75 42.44 43.31
full yes 19.41 19.25 41.66 42.45

6. Baseline results
6.1. Track 1

Table 3 reports DER and JER for Track 1. DER for the full sys-
tem ranges from 19.25% to 20.65% and JER from 41.66% to
47.4%. Mirroring the findings of [18, 39], VB-HMM resegmen-
tation reliably improves DER and JER, though here the gains
are relatively modest: about 1% absolute for DER and less than



Table 4: Track 2 diarization results for the core/full DEV and
EVAL sets with and without VB-HMM resegmentation.

Part. VB-HMM reseg. DER (%) JER (%)
Dev Eval Dev Eval

core no 24.06 29.51 49.17 53.82
core yes 22.28 27.34 47.75 51.91
full no 24.08 28.00 45.61 49.35
full yes 21.71 25.36 43.66 46.95

1% for JER. Possibly, the effects of VB-HMM resegmentation
could be enhanced by using a UBM-GMM and variablity ma-
trix trained on or adapted to in domain materials, though we did
not explore this possibility. As expected, the unbalanced core
DEV/EVAL sets are harder than their unbalanced full counter-
parts, though degree by which performance degrades for the
core sets is less than we had expected (mean decrease of 0.87%
absolute for DER and 4.6% absolute for JER) and the EVAL set
is marginally harder than the DEV set.

6.2. Track 2

As seen in Table 4, for Track 2 VB-HMM is universally helpful
with a much more pronounced effect than for Track 1: mean
improvement of 2.24% absolute for DER and 1.92% for JER.
As expected, metrics are across the board higher for Track 2,
reflecting the shift from manual speech segmentation to an au-
tomatic segmentation. To better understand the interaction be-
tween the SAD and diarization components, we computed miss
rate, false alarm rate, and overall error (i.e., the actual frame-
wise error rate) for the SAD system for both sets. These results
are reported in Table 2. Miss rates are quite low (below 5%
across the board), but false alarm rates are much higher, espe-
cially for the EVAL set where they exceed 15%. Overall error
ranges from sub 2.5% (for the DEV sets) to greater than 7% (for
the core EVAL set), indicating that for Track 2 substantial gains
in improvement could be attained simply by further tuning of
the SAD model.

6.3. VB-HMM diarization

Recently, VB-HMM has been proposed as a method for cluster-
ing the x-vectors themselves [40] and has been used to great
effect by BUT in their winning submissions to DIHARD II
[39, 41]. Consequently, we also experimented with VB-HMM
clustering of x-vectors, which was inserted as a step between
AHC and VB-HMM resegmentation. However, we found tun-
ing VB-HMM for x-vector clustering to be difficult and were
unable to find a set of parameters for which it reliably improved
on the results of AHC. In the end, we omitted this step from the
challenge baseline, though we intend to continue exploring its
use for future works.

6.4. Bandwidth-aware pipelines

The x-vector extractor, PLDA, UBM-GMM, and variability ma-
trix were all trained using wideband speech data. We also exper-
imented with separate systems for wideband and narrowband
recordings with logistic classifier operating on x-vectors used
to select the appropriate system for each recording. However,
we observed no improvements over the baseline presented in
Section 5, so opted for the system with the simpler architecture.

7. Summary
This paper provides an overview of the DIHARD III challenge
as baselines for diarization and speech activity detection and
results for those baselines on the challenge data.
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M. Gómez, and A. de Prada, “Albayzin 2018 evaluation: the
iberspeech-rtve challenge on speech technologies for spanish
broadcast media,” Applied Sciences, vol. 9, no. 24, p. 5412, 2019.

[16] N. Ryant, K. Church, C. Cieri, A. Cristia, J. Du, S. Ganapathy,
and M. Liberman, “First DIHARD challenge evaluation plan,”
Tech. Rep., 2018. [Online]. Available: https://zenodo.org/record/
1199638

[17] G. Sell, D. Snyder, A. McCree, D. Garcia-Romero, J. Villalba,
M. Maciejewski, V. Manohar, N. Dehak, D. Povey, S. Watanabe
et al., “Diarization is hard: Some experiences and lessons learned
for the JHU team in the inaugural DIHARD Challenge,” in Proc.
Interspeech, 2018, pp. 2808–2812.

[18] M. Diez, F. Landini, L. Burget, J. Rohdin, A. Silnova,
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timizing Bayesian MM based x-vector clustering for the Second
DIHARD Speech Diarization Challenge,” in Proc. ICASSP, 2020,
pp. 6519–6523.


