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Abstract—DIHARD challenge focuses on the hard diariza-
tion problem and the DIHARD dataset includes a number of
challenging domains that are hard to obtain low diarization
error rates. We propose a novel approach to deal with domain
mismatch problems by estimating the domain of the given
input session. We take advantage of three different embedding
extractors trained on different datasets. Based on these multiple
embedding extractors, our domain adaptive speaker diarization
system employs two different approaches: Hard decision and
soft decision. In the hard decision method, we estimate the given
session into one of the three categories and select an embedding
extractor suited to that category. On the other hand, in the soft
decision method, we train our proposed neural affinity score
fusion network that estimates the desirable weights for the affinity
scores we obtain from the three embedding extractors. We show
the performance gain from each method and how our domain
estimator models are trained to obtain such improvement. In
addition, we introduce the auto-tuning spectral clustering method
to develop a parameter-free diarization system.

Index Terms: Speaker Diarization, Domain Adaptation, DI-

HARD3

I. NOTABLE HIGHLIGHTS

Speaker diarization often suffers from sparse training dataset
since training dataset for speaker diarization is not as abundant
as training dataset for other applications such as automatic
speech recognition (ASR). To tackle this issue, we propose a
domain adaptive speaker diarization system that estimates the
most suitable speaker embedding extractor or estimates the
weights between the speaker embedding extractors that are
trained on different dataset. We show the performance gains
based on the methods we propose for Track 1.

II. DATA RESOURCES

In USC-SAIL DIHARD3 speaker diarization system, we
employ three different x-vector models [1] trained on different
datasets with a few modifications in the x-vector model
architecture. To be more precise, x-vector CH is trained on
SRE challenge dataset, x-vector VOX is trained on Voxceleb
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Fig. 1. Overall structure of USC-SAIL diarization system for DIHARD3

dataset and x-vector CHIME is trained on Voxceleb dataset and
then adapted on CHIME-6 dataset . We use window length
of 1.5 s, hop-length of 0.25 s and minimum window length of
0.5 s. We employ cosine similarity to measure the similarity
between two speaker embedding vectors. For the hard decision
method, we only use affinity matrix that is obtained from a
single x-vector model while we use weighted sum of three
affinity matrices in the soft decision method. Based on the
affinity matrix we get from domain adaptation process, we
employ the same clustering method for all the experiments
and sessions in DIHARD 3 challenge.

III. DETAILED DESCRIPTION OF ALGORITHM

A. Domain Adaptive Processing

1) Hard Decision Method: As previously mentioned, we
employ three different speaker embeddings, as we found
different embeddings to be optimal for different domains.
Motivated by the findings from Table II, we developed a

Thttps://kaldi-asr.org/models.html
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Fig. 2. Diagram of the proposed domain classifier.

TABLE I
CONFUSION MATRIX FOR DOMAIN CLASSIFICATION ON HELD-OUT TEST
SESSIONS
Predicted
CH | VOX | CHIME-6

CH 17 0 0

True VOX 3 7 0

CHIME-6 4 0 15

classifier that can predict the speaker embedding to use for
each session. We classify each session into one of the three
categories, and employ the corresponding speaker embedding
to perform speaker diarization. Our approach can be thought of
as a crude domain classifier, where our goal is not to accurately
predict the domain, but to broadly assign each session to its
optimal speaker embedding. This kind of domain grouping
has been previously explored in [2], but in this work we
grouped them based on the optimal speaker embedding to use.
The actual grouping of domains is mentioned in the section
IV-A. Hereafter we will refer to the classifier we developed
as domain classifier.

We employ a deep neural network as our domain classifier.
It takes the concatenation of the three speaker embeddings
as input. It consists of two 1-D convolutional layers followed
by an average pool layer resulting in fixed dimensional em-
beddings. The embeddings are then passed through a fully-
connected layer with linear activation which assigns proba-
bilities to each class. We use batch normalization followed
by ReLU activation and a dropout layer with probability 0.4
after both the convolutional layers. The network was trained
on the Development Set using cross-entropy loss. We hold
out roughly 20% of sessions from each domain to test our
models, and split segments from the remaining sessions into
train and validation splits. Since the speaker embeddings are
extracted at segment level, our model assigns probabilities for
each segment belonging to the 3 classes. During inference,
the probabilities of the segments in the session are averaged to
obtain the mean probability of the session belonging to each of
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Fig. 4. Example of training data label generation.

the 3 classes. In addition, instead of assigning class labels that
have maximum probability value, we first scale each probabil-
ity value, with the scaling factor computed to maximize the F1
score of predictions, before choosing the maximum value. The
intuition behind the scaling of probabilities is to assign higher
weights to some classes for optimal classification performance.

Table I shows the confusion matrix of session-level pre-
dictions on the held-out test sessions. This corresponds to an
unweighted average F1 score of 0.85. We find that CH sessions
were all correctly classified, while there are instances where
classes belonging to the other sessions were also classified as
CH. We conjecture that this is due to the class imbalance in
the development set of the data, with more sessions are from
the CTS domain compared to other domains.

2) Soft Decision Method: For the soft decision method,
we employ a neural network architecture that is similar to
Siamese-network [3] and we refer to this neural network
model as neural affinity score fusion (NASF) modol. As
described in 3, NASF model accepts three different x-vector
embeddings that are extracted from the same audio segment.
The embeddings are forward propagated through three separate
fully-connected layers then merged to get a concatenated
embedding. For the fully-connected layers, 128 units are used
for each layer with ReLU activation. The difference between
two concatenated embeddings from two different feed-forward
networks is fed to the last shared linear layer. The whole model
is trained by calculating mean square error (MSE) loss with
a ground truth speaker label for each segment. The ground
truth speaker labels are created using the approach described



in Fig. 4. We employ the concept of speaker vector that is
created by calculating the portion of each speaker for the given
segment window. Since the ground truth speaker label vectors
are bound to be positive, cosine similarity d between two
speaker vectors ranges from O to 1. Therefore, cosine similarity
values from the speaker embeddings in the NASF model are
min-max normalized to (0, 1) scale. For each session, 40,000
pairs of audio segments are randomly extracted for both train
and inference.

We use weight sharing network and feed three different set
of x-vector embeddings (CH, VOX and CHIME-6) from two
different segments. Thus, there are six different embedding
vectors (two sets of three) that are fed to NASF module. The
NASF module outputs weight between these three x-vector
inputs and we use this weight to calculate the weighted sum
of three affinity matrices. The final weighted affinity matrix is
then fed to clustering module to obtain speaker labels.

B. Clustering

We use the auto-tuning spectral clustering method appeared
in [4] which does not require development set for tuning
the clustering algorithm. The auto-tuning spectral clustering
method employs nomarlized maximum eigengap (NME) to
find the best binarization parameter p for spectral clustering
process. Thus, the auto-turning spectral clustering approach
determines p for each session and applies different p values
over the different sessions. In addition to parameter p, the
number of speaker is also determined by finding the maximum
gap of the obtained eigenvalues. The auto-tuning spectral clus-
tering approach not only shows the better performance over
traditional probabilistic linear discriminant analysis (PLDA)
coupled with agglomerative hierarchical clustering (AHC)
[5] method but also shows better performance over spectral
clustering method based on manual tuning of p on a develop-
ment set. In CHIME-6 challenge 2, the auto-tuning spectral
clustering method was employed by the challenge winner,
STC [6] team, showing a superior clustering performance over
AHC method. Especially for DIHARD challenge, since we do
not have enough development dataset for parameter tuning,
auto-tuning spectral clustering approach showed benefit over
clustering methods that require parameter tuning. We employ
sparse-search where we only allow maximum of 20 threshold
values to be searched. The detailed algorithmic description can
be found in [4] and the source code can be downloaded from
a git repository>.

IV. RESULTS ON THE DEVELOPMENT SET
A. Development Set

Table II shows the DER achieved by each x-vector type for
each domain in DIHARD 3 development set. Note that result
in Table II is obtained from the FULL set, Track 1. In Table II,
DER for each doamin is shown for each x-vector embedding
type. For hard-decision classifier, we group the domains to the

Zhttps://chimechallenge.github.io/CHIME-6
3https://github.com/tango4j/ Auto-Tuning-Spectral-Clustering

TABLE 11
DEVELOPMENT SET DER FOR EACH DOMAIN AND X-VECTOR TYPE.
Track 1 x-vector Type
Domain CH VOX | CHIME-6
Audiobooks 0.36 0.44 0
Broadcast Interview 4.19 6.89 3.09
Clinical 23.66 | 22.05 16.63
Court 4.63 9.29 5.09
CTS 15.05 | 19.57 19.13
Maptask 6.6 5.94 6.64
Meeting 3144 | 31.79 28.3
Restaurant 57.71 | 56.04 52.59
Socio Field 16.21 | 14.24 13.78
Socio Lab 8.45 10.36 9.61
Webvideo 41.32 | 39.24 40.66
Total 19.89 | 20.52 19.44
TABLE III
DEVELOPMENT SET RESULTS FOR TRACK 1.
CORE FULL
Type DER JER DER JER
x-vector CHIME-6 22.14 48.85 | 19.44 4276
Oracle Hard Decision | 21.25 46.56 | 18.65 41.18
Dev-set Soft Decision | 19.68 43.36 | 17.39  38.29
TABLE IV
EVALUATION SET RESULTS FOR TRACK 1.
CORE FULL
Type DER JER DER JER
x-vector CHIME-6 | 22.140  48.850 | 20.310 43.700
Hard Decision 22.250 48370 | 19.660 42.520
Soft Decision 19.760  43.030 | 18.190 38.330

best performing x-vector type based on the development set
result. Thus, the domains are grouped as follows:

o CH domains: Court, CTS, Socio Lab

e VOX domains: Maptask, Webvideo

¢ CHIME-6 domains: Audiobooks, Broadcast Interview,

Clinical, Meeting, Restaurant, Socio Field

In table II, the last row shows the total DER value from each
x-vector embedding extractor. Without selecting an embedding
extractor for each session, x-vector CHIME-6 shows the best
performance among three x-vector embedding extractors. In
Table III, the result with the ground truth domain labels (oracle
hard decision) and the result with dev-set optimized soft
decision method are shown. Note that since we use DIHARD3
dev-set to train our proposed domain adaptive system, the
results in Table III can be an outcome of overfit models.

B. Evaluation Set

The Table IV shows the final evaluation results we obtain
from x-vector CHIME-6 model, hard decision model and soft
decision model. For FULL set, hard decision model shows
a slightly improved performance over the system based on
x-vector CHIME-6. Soft decision method shows improved
results for both CORE and FULL sets showing DER of
19.76% and 18.19%, respectively.

V. HARDWARE REQUIREMENTS

e Total number of CPU cores used: 6 cores and 12 threads



(1]

[2]

(3]

(4]

(5]

(6]

Description of CPUs used: Intel i7-6850K 3.60 GHz
Total number of GPUs used: 1 GPU

Description of GPUs used: Nvidia GTX 1080 Ti, 11.3
TFLOPs, 11GB Memory

Total available RAM: 128 GB

Used disk storage: 3 GB

Machine learning frameworks used: Pytorch 1.3.1

REFERENCES

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-
vectors: Robust DNN embeddings for speaker recognition,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., Apr. 2018, pp. 5329-5333.
M. Sahidullah, J. Patino, S. Cornell, R. Yin, S. Sivasankaran, H. Bredin,
P. Korshunov, A. Brutti, R. Serizel, E. Vincent et al., “The speed
submission to dihard ii: Contributions & lessons learned,” arXiv preprint
arXiv:1911.02388, 2019.

G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in Proceedings of the Workshop on Deep
Learning in International Conference on Machine Learning, ICML, 2015.
T. J. Park, K. J. Han, M. Kumar, and S. Narayanan, “Auto-tuning spectral
clustering for speaker diarization using normalized maximum eigengap,”
IEEE Signal Processing Letters, vol. 27, pp. 381-385, 2019.

G. Sell, D. Snyder, A. McCree, D. Garcia-Romero, J. Villalba, M. Ma-
ciejewski, V. Manohar, N. Dehak, D. Povey, S. Watanabe et al., “Diariza-
tion is hard: Some experiences and lessons learned for the jhu team in
the inaugural dihard challenge.” in Interspeech, 2018, pp. 2808-2812.

I. Medennikov, M. Korenevsky, T. Prisyach, Y. Khokhlov, M. Ko-
renevskaya, I. Sorokin, T. Timofeeva, A. Mitrofanov, A. Andrusenko,
1. Podluzhny et al., “The stc system for the chime-6 challenge,” in CHIME
2020 Workshop on Speech Processing in Everyday Environments, 2020.



