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Abstract—This paper describes the system developed by HK
PolyU for the Third DIHARD Speech Diarization challenge.
Unlike the official baseline, which employs a very sophisti-
cated pipeline including probabilistic linear discriminant analysis
(PLDA) and variational Bayes hidden Markov model (VB-HMM)
re-segmentation, our system relies entirely on the speaker em-
beddings obtained from a DenseNet. For each fixed-length speech
segment, we computed the cosine distance scores between its
speaker embedding and the speaker embeddings of the adjacent
speech segments to identify the speaker turns. Then we used
cosine distance again as a metric for agglomerative hierarchical
clustering (AHC). Despite the straightforward approach, we
produce competitive results.

Index Terms—Speaker diarization, DIHARD, Speaker change
detection, DenseNet, Speaker embedding

I. HIGHLIGHTS

The most distinct feature of our system is the use of simple
cosine metric in both speaker change detection and clustering.
Thanks to the speaker change detection module, we are able
to use a shorter segment than widely seen in the literature [1].
Unlike the unbounded PLDA scores [2], [3], cosine distance
is bound between 0 and 2, which makes setting the thresholds
for speaker change detection and speaker clustering easier.

II. DATA RESOURCES AND TRAINING PROCEDURES

The training data include the VoxCeleb1 development set
and the VoxCeleb2 development set [4], [5]. We followed
the data augmentation strategy in the Kaldi SRE16 recipe.
The training data were augmented by adding noise, music,
reverb, and babble to the original speech files in the datasets.
After filtering out the utterances shorter than 4 seconds and
the speakers with less than 8 utterances, we are left with
7,302 speakers. We used the filter-bank features implemented
in Kaldi. We used a frame length of 25ms. The number
of mel-scale filters is 40, and the lower and upper cutoff
frequencies covered by the triangular filters are 20Hz and
7,600Hz, respectively.

III. SYSTEM DETAILS

A. Speech Activity Detection

We used the pre-trained model1 from Pyannote [6] for
speaker activity detection (SAD). The network comprises two
bi-directional long short-term memory (B-LSTM) layers and

1https://github.com/pyannote/pyannote-audio-
hub/tree/master/models/sad dihard.zip

three fully-connected layers [7]. The network was trained with
2-second chunks from the single-channel subset of DIHARD
[1].

B. DenseNet Architecture for Speaker Embedding

DenseNets were proposed in [8] for computer vision. A
DenseNet comprises two block types, namely, dense block and
transition block. In a dense block, each layer is connected by
all the output from the previous layers. To prevent the number
of feature maps from growing excessively, a transition block
is introduced to reduce the feature map size. Suppose each
convolutional layer produces k feature maps, then the l-th layer
inside the block has k0+k× (l−1) feature maps, where k0 is
the number of channels in the input layer. The parameter k is
referred to as the growth rate. In this work, we used a dense
network composed of 1-dimensional convolution instead of
2D convolution [9], [10]. We used the same statistics pooling
layer as that of the x-vector network. Because max-pooling
and average pooling do not work well in speaker recognition,
we replaced the max-pooling by stride 2 convolution layers.
Table I shows our network architecture.

C. Additive Margin Softmax

Margin-based loss has been very successful in face recog-
nition and speaker recognition [11]. Additive margin loss
enforces a minimum margin m between the target class and
non-target classes:
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where W is a weight matrix (Wj is the j-th column of W)
and x is an embedding vector, both of which are normalized
to have unit length. s is a scaling constant.

D. Speaker Change Detection

After obtaining the speech segments through SAD or using
oracle SAD, we divided the segments into 1-second chunks
without overlapping. Then, starting from the first chuck, we
scored it with the next chunk using cosine similarity. The score
was used to decide whether to merge the two segments. If the



Layers Output Size DenseNet-121

Convolution 400× 40 conv 3

Dense Block (1) 400× 80

[
conv 1
conv 3

]
× 6

Transition Layer (1) 200× 320 conv 2 stride 2

Dense Block (2) 200× 320

[
conv 1
conv 3

]
× 12

Transition Layer (2) 100× 640 conv 2 stride 2

Dense Block (3) 100× 640

[
conv 1
conv 3

]
× 24

Transition Layer (3) 50× 1280 conv 2 stride 2

Dense Block (4) 50× 1280

[
conv 1
conv 3

]
× 16

Stats-pooling Layer 50× 2560 -
FC 1 2560× 256 Linear

Classification Layer 1 256× # of classes AM-Softmax
TABLE I

DENSENET ARCHITECTURE FOR SPEAKER EMBEDDING. THE GROWTH RATE FOR THE NETWORKS IS 40. NOTE THAT EACH “CONV” LAYER SHOWN IN
THE TABLE CORRESPONDS TO THE SEQUENCE BN-RELU-CONV.

Dataset DER [%] JER
Development 20.07 46.21

Evaluation 19.51 45.11

TABLE II
PERFORMANCE OF OUR TRACK1 SYSTEM ON FULL SET.

Dataset DER [%] JER
Development 21.09 50.84

Evaluation 21.53 51.26

TABLE III
PERFORMANCE OF OUR TRACK 1 SYSTEM ON CORE SET.

score is greater than 0.65, the two chunk were merged into a
single chunk. The merged chunk was scored against the next
chunk, and the procedure was repeated until the last chunk
was reached. The goal of our speaker change detection is not
to accurately identify all speaker changes as in [12], but to
have a very low false positive rate.

E. Agglomerative Hierarchical Clustering

After obtaining the segments from speaker change detection,
we clustered the segments using agglomerative hierarchical
clustering (AHC). We chose Ward’s method as linkage crite-
rion to merge the clusters. We swept the threshold from 0 to
9 with an interval of 0.5 and chose the one that optimizes the
performance on the development set.

F. Results

The performance of our system in Track 1 is presented in
Table II and Table III. The performance of our system in Track
2 is presented in Table IV and Table V.

IV. HARDWARE REQUIREMENTS

All experiments were run on a computer with two Intel
Xeon Silver 10 core CPUs, 64GB RAM, and two Nvidia
2080TI graphic cards. The memory consumption and process-
ing time are summarized in Table VI.

Dataset DER [%] JER
Development 27.33 53.23

Evaluation 26.91 51.09

TABLE IV
PERFORMANCE OF OUR TRACK 2 SYSTEM ON FULL SET.

Dataset DER [%] JER
Development 29.54 57.34

Evaluation 28.57 56.25

TABLE V
PERFORMANCE OF OUR TRACK 2 SYSTEM ON CORE SET.
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