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Abstract

In this work, we describe the systems developed for tackling
speaker diarization problem for the 3rd edition of DIHARD
2020 challenge. We submit systems only for track 1 task of
this challenge. For this task, our developed systems employ
the well-known x-vector/PLDA/AHC framework followed by
the Bayesian Hidden Markov Model (HMM) with eigenvoice
priors applied at the x-vector embeddings domain. For the ex-
traction of x-vector embeddings we adopt three deep learning
architectures, namely, TDNN with statistics pooling, TDNN-
LSTM and TDNN with multi-level (i.e., from more than one
layer) statistics pooling. PLDA model is trained on the out-of-
domain data and then adapted to the DIHARD 2020 develop-
ment data. 30-dimensional Mel-filterbank features are used as
frontend. As a pre-processing step, we dereverberate the devel-
opment and evaluation data of DIHARD 2020 using weighted
prediction error (WPE) dereverberation algorithm.

Index Terms: Speaker diarization, WPE, agglomerative hierar-
chical clustering, variational Bayes HMM, speech activity de-
tection.

1. Introduction

Automatic determination of speaker turns in a conversational
audio recordings is denoted as Speaker Diarization (SD). It
is often referred as "who spoke when”. In general, a di-
arization system partitions multi-speaker speech recordings into
short segments and clusters them according to speaker identities
[1,2,3,4].

Speaker diarization has a wide range of applications in three
primary domains namely, broadcast news audio, recorded meet-
ing and telephone conversation. Applications of diarization in-
clude audio and speaker indexing, content structuring, audio
information retrieval, speaker verification in the presence of
multiple-speaker recordings, speech-to-text transcription, and
video processing [1, 2, 3, 4, 5].

Speaker diarization has received much attention in the re-
cent years. On some specific task or dataset, such as Call-
Home [1, 3, 5, 6], researchers were able to attain state-of-the-art
speaker diarization performances but the performances do not
generalize to more challenging and realistic data including web
videos, speech in the wild, child language recordings, Video
Annotation for Speech Technology (VAST) etc [7, 8, 9].

In order to draw researcher’s attention on these more chal-
lenging scenarios the first DIHARD challenge [7] was launched
in 2018 focusing on "hard’ conditions. Following the success of
first DIHARD challenge the second and third editions of the
challenge have been launched in 2019 and 2020, respectively
[8, 9]. The main purpose of DIHARD series of challenges was
to provide a common framework with standardized data, tasks,
and metrics for facilitating comparison of current and future re-
search works as well as to promote research works on building
robust diarization systems [2, 3, 4, 7, 8, 10, 9, 11].

In this work, we provide a description of the systems devel-
oped for third edition of the DIHARD challenge 2020 [9, 11].

2. Data Resource

We employ following source of corpora for all our experiments
for the DIHARD challenge 2020:

e Voxceleb 1 & 2 [12].

* NIST SRE Mixer data (excluding the MIXER6 Speech
(LDC2013S03), NIST SRE10 & SRE12 evaluation data)
[13].

¢ NIST SRE 2016 [14] and 2018 [15] Evaluation data.
* DIHARD II Development data [8].

Following the NIST SRE 2016 kaldi recipe [13] data
Augmentation is performed to the above mentioned data
with additive noise and room impulse response (RIRs) taken
from MUSAN [16] and SLR28 [17] datasets. @ MUSAN
and SLR28 datasets are available in the following link
https://www.openslr.org/.

Augmented data is used for training the speaker embed-
dings extractor and the original training data excluding DI-
HARD II development data is used for training out-of-domain
PLDA parameters. DIHARD III development data is used for
tuning the system parameters and results are reported on the
evaluation set (from leaderboard). In-domain data (DIHARD II
development and DIHARD III development) is used for training
in-domain PLDA parameters.

3. Description of our Developed Systems

Our developed systems consists of following steps:

3.1. Dereverberation using Weighted Prediction Error Al-
gorithm

As pre-processing step for all systems we apply weighted pre-
diction error (WPE) - based single channel dereverberation for
enhancing the 3rd DIHARD challenge 2020 development and
evaluation data. The WPE performs dereverberation using a lin-
ear time invariant filter and produces M -channel outputs from
M -channel inputs [18]. Here, the number of channel is M = 1.

3.2. Speech Activity Detection (SAD)

Since we participate only on track 1 of the DIHARD challenge
2020 we use reference SAD segmentations provided by the or-
ganizer for the challenge development and evaluation datasets.
Speech segmentations generated by an energy-based SAD are
used for other corpora.

3.3. Features Extraction

We extract 30-dimensional Mel-filterbank (MelFB) features
that cover the frequency regions 20-7600 Hz. Mean normaliza-



tion is applied with a sliding windowing of 3 sec. For features
extraction an analysis frame length of 25 msec is used with a
frame shift of 10 msec.

3.4. Extraction of Speaker Embeddings

One of the main components for speaker recognition and
speaker diarization is the extraction of speaker embeddings.
This is normally done by training an embedding extractor in un-
supervised fashion (such as i-vector extractor [19]) or in super-
vised way (such as neural network-based embeddings extractor
[20, 21, 22]) on the top of frame level acoustic features.

For speaker diarization, extraction of speaker embeddings
using a deep learning architectures, such as TDNN, in super-
vised fashion is proved to be very effective. In this work, we
employ following three supervised embeddings extractors:

e TDNN: This embeddings extractor is based on time de-
lay neural network (TDNN) with a single statistics pool-
ing layer and is similar to the one used in DIHARD III
baseline [9] and in [20]. Our baseline system use this for
the extraction of speaker embeddings.

* Extended TDNN: This supervised extractor is based on
a extend version of TDNN architecture with multi-level
statistic pooling (i.e., statistics are pooled from more
than one layer) [10]. For our contrastive system we use
this supervised extractor to extract speaker embeddings.

* Extended TDNN-LSTM: This extractor is similar to the
extended TDNN speaker extractor but in this case a
LSTM layer is employed between 1st and 2nd TDNN
layers. Multi-level statistics pooling is used including
one from the LSTM layer. For our primary system
speaker embeddings are extracted using this supervised
extended TDNN-LSTM extractor.

Once training is done speaker embeddings are extracted
from 3s segments from the out-of-domain and in-domain PLDA
training data as mentioned in section 2.

Speaker embeddings from the DIHARD III development
and evaluation data are extracted from 1.5 sec segments with a
0.25 sec shift. Extracted embeddings are centered and whitened
using statistics estimated from the DIHARD III in-domain data,
followed by length normalization [10].

3.5. Similarity Scoring

Probabilistic linear discriminant analysis (PLDA) is employed
to perform similarity scoring between any two speaker embed-
dings in the same audio which are then used in the clustering
step by the clustering algorithm.

3.6. Clustering

Speaker embeddings are then clustered using agglomerative hi-
erarchical clustering (AHC) and a similarity matrix generated
by scoring with a PLDA model.

This initial clustering is then refined either using frame-
level Variational Bayes Hidden Markov Model (VB-HMM) re-
segmentation [23] or by performing another clustering based on
Bayes hidden Markov model and variational Bayes inference
[10].

4. Primary and Contrastive Systems
4.1. Primary System

In this system diarization is performed by segmenting each ob-
served recording into short overlapping segments after perform-
ing dereverberation with WPE algorithm, extracting speaker
embeddings using extended TDNN-LSTM extractor, perform-
ing similarity scoring with adapted probabilistic linear discrimi-
nant analysis (PLDA) model, carrying out Bayesian HMM clus-
tering with the LDA followed by a initial clustering with the ag-
glomerative hierarchical clustering (AHC) [10] algorithm. The
adapted PLDA model is obtained by the interpolation of out-of-
domain PLDA and in-domain PLDA models.

4.2. Contrastive System

This system conduct diarization by dividing each recording
into short overlapping segments, extracting speaker embed-
dings, performing similarity scoring with out-of-domain PLDA
model, clustering using agglomerative hierarchical clustering
(AHC) and then refining the AHC output using Variational
Bayes Hidden Markov Model (VBHMM) with posterior scal-
ing (denoted as VB resegmentation) [9]. This system is simi-
lar to DIHARD 3 baseline but with following differences - (i)
Extended TDNN architecture with multi-level pooling is used
instead of TDNN, (ii) development and evaluation sets are dere-
verberated employing WPE dereverberation technique.

4.3. Baseline System

Baseline system is similar to DIHARD III baseline as described
in [9].

5. Results on the Evaluation Set

In this section, we evaluate the the performances of our de-
veloped systems. Official evaluation metrics, Diarization Error
Rate (DER) and Jaccard Error Rate (JER), are used for report-
ing results on the evaluation set of task 1 for the 3rd DIHARD
challenge 2020.

Table 1 provides a comparison of performances on the eval-
uation set between our developed (primary & contrastive) and
the baseline systems on the core condition of task 1. We can see
that both primary and contrastive systems outperform the base-
line system in both official evaluation metrics. Primary system
provides the best performance in this condition.

Speaker diarization results reported in terms of DER and
JER metrics in table 2 demonstrate performance comparison
of our developed system with that of the baseline system. It
is observed from this table that with our developed systems we
achieved better performance than the baseline with primary sys-
tem yielding the best results.

Use of WPE-based dereverberation, extended TDNN-
LSTM - based embeddings extractor, adapted PLDA by interpo-
lation of out-of-domain PLDA and in-domain PLDA as well as
use of additioanal clustering of speaker embeddings based on
Bayes hidden Markov model and variational Bayes inference
led to better performance with our primary system.

6. Conclusions

In this work, we presented the systems developed for tack-
ling speaker diarization problem of task 1 for the 3rd edition
of DIHARD challenge 2020. We adopted the widely used
x-vector/PLDA/AHC framework followed re-clustering by the



Table 1: Speaker Diarization performances on the evaluation
set of 3rd DIHARD challenge 2020, Task 1 Core condition.

System DER (%) | JER (%)

Primary 16.440 37.400
Contrastive 19.580 46.990
Baseline [9] 20.650 47.740

Table 2: Speaker Diarization performances on the evaluation
set of 3rd DIHARD challenge 2020, Task 1 Full condition.

System DER (%) | JER (%)

Primary 15.500 33.350
Contrastive 18.330 41.390
Baseline [9] 19.250 42.450

Bayesian Hidden Markov Model (HMM) with eigenvoice priors
applied at the x-vector embeddings domain. We employed three
supervised speaker embeddings extractor based on TDNN with
statistics pooling, extended TDNN-LSTM and extended TDNN
with multi-level (i.e., from more than one layer) statistics pool-
ing. For our primary system, the PLDA model was trained on
the out-of-domain data and then adapted to the DIHARD 2020
in-domain data data. On the core and full conditions of task 1
our primary submission yielded better performance than the DI-
HARD III baseline system providing a ranking of 7th and 9th
on the leaderboard, respectively.
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