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ABSTRACT
This report describes the NAVER CLOVA speaker diariza-
tion system for the third DIHARD challenge. Our system
comprises the following five subsystems: end-point detec-
tion, overlapped speech detection, speaker embedding ex-
traction, feature enhancement, and clustering. Its process
pipeline has two improvements over the conventional diariza-
tion systems: feature enhancement and overlapped speech
detection. For feature enhancement, our proposed approach
first adopts an utterance-wise autoencoder that reduces the
dimensionality of extracted speaker embeddings. Then, we
apply a self-attention mechanism in which we refer to as
the attention-based aggregation. We aim to adapt and en-
hance the speaker representation for clustering using these
two techniques. Also, variants of CRNN based overlapped
speech detection systems, trained as a three-class classi-
fier, and their ensemble are explored to further reduce the
missed detection of overlapped speech regions. The sub-
mitted system achieves a diarization error rate of 14.96%
and 15.40% for the development and the evaluation datasets
of DIHARDIII_Task1_CORE track, which ranks the 3rd

place.

Index Terms— Speaker diarization, feature enhance-
ment, overlapped speech detection.

1. INTRODUCTION

The overall framework of our speaker diarization system is il-
lustrated in Figure 1. It comprises end-point detection (EPD),
overlapped speech detection (OSD), speaker embedding ex-
traction, feature enhancement, and clustering modules. In the
following sections, we introduce more details of each module.

2. END-POINT DETECTION

We use the EPD module presented in the baseline of DI-
HARDIII challenge for track2 [1, 2]. In particular, the EPD
module smooth the time-delay neural network-based speech
activity detection result with a hidden Markov model follow-
ing Kaldi Aspire recipe [3].

Fig. 1: Process pipeline of the NAVER CLOVA speaker di-
arization system.

3. OVERLAPPED SPEECH DETECTION

The OSD system detects the onsets and the offsets of seg-
ments that contain more than one speaker’s speech. Our OSD
system has three features, compared to the conventional sys-
tems. First, we train the model as a three-class classifier,
namely non-speech, single speaker speech, and overlapped
speech. In the test phase, we use the output layer’s node that
indicates overlapped speech. Second, we augment the train-
ing dataset by adding another speaker’s segment in the mid-
dle of a single speaker segment similar to that in [4]. This
augmentation is performed to increase the ratio of overlapped
speech, balancing ratios between different classes. Last, we
use a convolutional recurrent neural network (CRNN) archi-
tecture instead of recurrent neural network-based existing sys-
tems inspired by the recent success of CRNN architectures in
sound event detection [5].

For more reliable results, we use a score-level ensemble of
three variants: 2D CRNN model with squeeze and excitation
(SE) [6], 2D CRNN model without SE, and 1D CRNN model
without SE. The three model variants share a 128-dimensional
Mel-spectrogram as the input feature. The architectures of
each variant are shown in Table 1. Figure 2 shows the per-
formances of our OSD modules on the development set. We
set the threshold to meet a precision of 0.8, which is most
effective in terms of the diarization error rate (DER) on the
development set.

Based on the reported threats of overlapped speech in
speaker diarization [4], we modify our process pipeline by
incorporating the proposed OSD module. We first extract
speaker embeddings only from single speaker segments and



Fig. 2: Precision-recall curve illustrating the performance of
the ensemble of three OSD variants where a thresholds that
give a precision 0f 0.8 for the DIHARDIII development set is
chosen.

perform speaker clustering. Then, for each overlapped seg-
ments, we predict two labels based on centroids of adjacent
clusters. Concretely, we find top-2 centroids showing the
highest similarity and assign the corresponding labels for
each embedding of overlapped speech where each centroid is
calculated by averaging the embeddings of the corresponding
cluster.

4. SPEAKER EMBEDDING EXTRACTION

For the speaker embedding extraction, we train the ResNet3-
4SEV2 architecture in voxceleb_trainer1 with a few modifi-
cations. We use the development set of both VoxCeleb1 and
2 datasets to train the model. The number of filters in the
first convolutional layer is configured to 64. Average pooling
is performed instead of attentive statistics pooling after the
last convolutional operation. We extract a 256 dimensional
speaker embedding from each segment with a window of 1.25
second width, and 0.125 second shift.

5. FEATURE ENHANCEMENT

Feature enhancement is common in the machine learning
field, however, it has not been explored for speaker diariza-
tion to the best of our knowledge. In our analysis, speaker
embeddings in speaker diarization require discriminative
power for only a small number of speakers (e.g., four or
less). This is in contrast to speaker embeddings of speaker
identification or verification which demands discrimination
of thousand of speakers. Based on this analysis, we presume
that the diarization system can be improved by projecting
speaker embeddings to another representation space where a
small number of speakers from an identical session are well
discriminated.

1https://github.com/clovaai/voxceleb_trainer

Table 1: Architectures of CRNN-based variants for OSD.
Each convolutional block is composed of two convolutional
layers with batch normalization layers and an average pooling
layer. There is no stride for all convolutional layers. There-
fore the output shapes of convolutional blocks are determined
by the pooling size. L: length of the input sequence in frames,
bi-GRU: bidirectional gated recurrent unit.

Layer Kernel size Output shape

1D CRNN w/o SE
1D Conv Block 128× 3× 128 L× 128
1D Conv Block 128× 3× 196 L/2× 196
1D Conv Block 196× 3× 256 L/6× 256
bi-GRU 256× 512 L/6× 1024

2D CRNN w/o SE
2D Conv Block 1× 3× 3× 32 L/2× 128× 32
2D Conv Block 32× 3× 3× 64 L/6× 64× 64
2D Conv Block 64× 3× 3× 128 L/6× 32× 128
Avg pooling - L/6× 128
bi-GRU 128× 256 L/6× 512

2D CRNN w/ SE
2D Conv Block 1× 3× 3× 32 L/2× 128× 32
2D Conv Block 32× 3× 3× 64 L/6× 64× 64
2D Conv Block 64× 3× 3× 128 L/6× 32× 128
Avg pooling - L/6× 128
bi-GRU 128× 256 L/6× 512

Fig. 3: Effect of the attention-based aggregation technique on
the affinity matrix. We calculate the affinity matrix using one
sample in development set to compare the before (a) and after
(b) applying the attention-based aggregation technique. The
results show that the proposed technique act like a refinement
process that removes the most of noises on the affinity matrix.

To achieve this goal, we first reduce the dimensionality
of speaker embeddings using an autoencoder, that is trained
for each session during run-time. The autoencoder comprises
two layers, one for the encoder and the other for the decoder.
For the encoder layer, we apply max feature-map activation
[7]. Using the trained autoencoder, the 256-dimensional em-
bedding vectors are projected into a 20-dimensional enhanced
representations. Note that in dimensionality reduction, the au-
toencoder is designed to learn reconstruction of only one ses-
sion after random initialization. In particular, we train the au-



toencoder by 200 epochs using Adam optimizer with a 0.001
learning rate for each session.

After dimensionality reduction, we aggregate embedding
vectors using a self-attention mechanism, described in Algo-
rithm 1. We calculate the attention map for each embedding
using the softmax function and update embeddings iteratively
based on the derived attention maps. Two hyper-parameters
needs to be configured to apply the proposed attention-based
aggregation: number of repetitions and temperature value be-
fore softmax function. We fix these two values as 5 and 15, re-
spectively. Figure 3 shows the effect of the aggregation tech-
nique on the affinity matrix.

6. CLUSTERING MODULE

Based on embeddings enhanced by the proposed modules,
we perform spectral clustering to estimate the speaker labels
[8, 9]. First, we calculate the affinity matrix using cosine sim-
ilarity. Note that we do not apply any additional refinement
process on this matrix. Then, eigen-values and eigen-vectors
are calculated by applying eigen-decomposition to the affin-
ity matrix. To determine the number of clusters, eigen-values
greater than 20 are counted. Finally, we perform k-means
clustering on the spectral embeddings, which is a set of eigen-
vectors corresponding to the largest eigen-values, to estimate
final cluster labels.

7. DATASETS

Since our diarization system is not an end-to-end system,
achieving the best performance in each module does not al-
ways guarantee the lowest DER. Therefore, we empirically
explore and tune the performance of our diarization system, a
combination of various modules, using the datasets listed in
Table 2.

8. RESULTS

Table 3 demonstrates performances of various systems on the
DIHARDIII_Task1_CORE track, using the DIHARDIII
development set. First, we find that the proposed feature en-
hancement technique significantly increases the performance

Algorithm 1 Attention-based aggregation

1: Input: Speaker embeddings X of size L × 20
2: Hyper-parameters: Number of repetition N , Tempera-

ture value τ
3: for iteration = 1, 2, . . . , N do
4: Construct affinity matrix A|Ai,j=cos(Xi,Xj)
5: A = softmax(A *τ )
6: X = dot(A, X)
7: end for

Table 2: Data configurations for building each module of the
NAVER CLOVA speaker diarization system.

Module Data & Set Label

Embedding extractor

VoxCeleb dev
VoxCeleb 2 dev
MUSAN [10]
simulated rir [11]

speaker label

OSD module

AMI
DIHARD I dev
DIHARD II dev
VoxConverse dev
MUSAN

RTTM

EPD module
(only for track2) DIHARD III dev speech activity

Hyper-parameter
tuning DIHARD III dev RTTM

compared to the baseline. Additional performance improve-
ments are achieved using the output of the OSD module. We
also find that the proposed OSD and feature enhancement
modules can be effectively applied to conventional cluster-
ing methods such as agglomerative hierarchical clustering.
We submitted the system that achieved 14.97% DER on the
development set as the primary system. In addition, the sub-
mitted system showed an average time efficiency of 0.014
response time for the entire development set. The time ef-
ficiency was measured using one 24GB NVIDIA Tesla P40
GPU, and the maximum memory usage was 10.49GB. Fi-
nally, Table 4 shows the results from the leaderboard of the
DIHARDIII challenge.

Table 3: Performances of various systems on development
set in diarization error rate (DER) for task1. FE: feature
enhancement, OSD: overlapped speech detection.

Clustering method DER (%)

Our baseline AHC 21.41
Spectral clustering 25.23

W/ FE AHC 17.68
Spectral clustering 16.84

W/ FE & OSD AHC 16.45
Spectral clustering 14.97

Table 4: Performances of the submitted system on evaluation
set in diarization error rate (DER). FE: feature enhancement,
OSD: overlapped speech detection.

Part DER (%)
track1 track2

Primary system W/ FE & OSD core 15.40 24.31
full 13.95 21.86
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