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Motivation

Pain points in DIHARD

Overlapped speech: detection, assignment, etc..
Diverse environments: telephone, cafe, street, etc..

Improving generalization ability

Proposed main ideas

lterative (multiple stages) strategy
Domain-dependent processing



System Overview
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* Three main diarization systems:
« Clustering based Diarization
« |terative Speech Separation (ISS) based Diarization
« |terative Target-speaker VAD (ITS-VAD) based Diarization

« Several auxiliary techniques:
« Audio Domain Classification
« Speech Enhancement
« Dover-lap for system fusion
« ASR-related attributes 4



Audio Domain Classification
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Speech Enhancement

Clean output
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PELPS,[1] :

* Progressively Enhanced LPS at target layer 1

* 10dB increasing between 2 adjacent targets

PELPS, enhanced speech applied on :

e RESTAURANT domain

* TRACK2 SAD

[1] L. Sun, J. Du, X. Zhang, T. Gao, X. Fang, and C.-H. Lee, “Progressive multi-target network based speech

enhancement with snr-preselection for robust speaker diarization,” ICASSP, 2020.
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Clustering Based Diarization System

I

X—Vector PLDA BHMM RTTM
Extractor Estimation Clustenng Clustering

DER (%) on Trackl Development Set

Full Core
Miss FA SpkErr DER Miss FA SpkErr DER
1092 0 498 159 1094 O 5.18 16.12

e Clustering based diarization system[1] can’t well handle overlapping speech

[1] M. Diez, L. Burget, F. Landini, et al. “Optimizing Bayesian HMM based x-vector clustering for the second

DIHARD speech diarization challenge,” ICASSP, 2020. .



Speech Separation Based Diarization

e Solving diarization via speech separation
* Two parts: separation and detection
* Well handling overlapped regions in detection part

Spectrogram
(2-speaker mixture)

[ Speech Activity Detection

\ 4
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Problem of Blind Speech Separation

: Lack of generalization ability

Pre-trained
SS model

successful case failure case

Mixture Mixture
Ground Truth Ground Truth
Speakerl Speakerl

Speaker2




Iterative Speech Separation Based Diarization

« Improving generalization ability by multi-stage process
« Improving performance via more accurate priors in iterative process
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Iterative Speech Separation Based Diarization

Experimental setup

Pre-trained model:

e Use the Librispeech dataset to simulate 250 hours training data;
* Train a fully convolutional time-domain audio separation network (Conv-TasNet)[1,2] model;

Fine-tuned model:

e Simulate 5000 mixed audios (about 2-3 hours) for each session in CTS;

0,
— = —
System

Clustering based diarization 16.22 15.78 15.94

ISS based diarization 8.31 13.11 15.11

[1]Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal time—frequency magnitude masking for speech
separation.” IEEE/ACM transactions on audio, speech, and language processing, 2019.
[2]https://github.com/asteroid-team/asteroid
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Target-Speaker Voice Activity Detection

‘ output1 \ [output2] [outputBJ ‘ output4 \

Combining

1-layer ;LSTMP  TS-VADI[1]

* Handling overlapping speech

SD1(SD2|SD3|SD4
[ f I f I * I $_], * Obtaining great performance on CHiME-6
r4_|ayerj ( Speaker Detection 1 ¢ TS-VAD problems
CNN [ ] 2taver BLSTMP Only handling session of fixed speaker number

(shared weights)

I + * f * * Poor generalization ability to diverse environments

MFCC [|v1 ] [|v2] [IV3] [|v4]

[1]lvan Medennikov, et al. “Target-Speaker Voice Activity Detection: a Novel Approach for Multi-Speaker
Diarization in a Dinner Party Scenario”, Interspeech, 2020.



TS-VAD for Variable Number of Speakers

* Keeping the original TS-VAD structure and taking output speaker N = 8

* When session speaker number N! = N in training and testing

i-vector in a session { Civ1 [SR2REE iv N | }

Selecting speakers from

Discarding
train sets randomly

i-vector of TS-VAD input [ Civi [N N ]
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Iterative TS-VAD for Variable Number of Speakers

* |terative TS-VAD is proposed to solve mismatch between training and testing set
* Fine-tuning TS-VAD pre-trained model for each session
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Experiments on Trackl

Training data

* i-vector extractor
* Voxceleb 1 and?2
e TS-VAD pre-trained model (Total: 2500 hours)
e Switchboard-2, AMI Meeting Corpus, Voxconverse DEV
* Simulated multiple speaker dialogues with LibriSpeech
 [terative TS-VAD finetuned model (4 hours for each session)
* Simulated multiple speaker dialogues with non-overlap speaker segments

m MAPTASK | BROADC. | COURT. | SOC. LAB CLINICAL (SOC. FIELD | MEETING |WEBVIDEO| RESTAURANT

Clustering based diarization 5.02 260 295 797 16.22 1097 11.87 2641 35.02 38.14

TS-VAD 6.71 294 315 881 10.21 16.48 13.79 2472 36.73 47.71
Iterative TS-VAD 2.27 237 246 517 7.76 9.83 10.74 23.05 35.55 39.77
* TS-VAD

* Performing better on well matched domains
 [terative TS-VAD (ITS-VAD)

* Greatly improving generalization abilities on most domains
 Still cannot handle complex environments 15



Post-processing

* Diarization Systems
* Clustering based diarization
* |ISS based diarization
* Iterative TS-VAD based diarization with different priors
System Fusion
* Dover-lap[1] of above systems
Domain Selection
* Selecting the best system for each domain according to DEV sets.
ASR-related attributes
* laughter detection

_ _ Laughter detection _ ‘ _
I R | > N e
1 1 1 1
I I I 1
1 1 i i
= DS
Laughter segment Laughter segment

Speakerl: I Speaker2: I Speaker3:

[1] D. Raj, L. P. Garcia-Perera, Z. Huang, et al. “DOVER-Lap: A Method for Combining Overlap-aware
Diarization Outputs.” arXiv preprint arXiv:2011.01997, 2020.



Track1 Results
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m Clustering based diarization m +ISS based diarization m +ITS-VAD based diarization m +Post-processing

* We ranked 1st on both FULL and CORE sets of Track1.
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Track?2 SAD

- Network structures
* DNN (195-256-128-2)
* CNN-LSTM-DNN (2 CNN layers, 2 LSTM layers, 2 DNN layers)
e TDNN[1,2]

- Enhanced speech for fine-tuning and testing

- Fusion: voting from the three systems

[1] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural network architecture for efficient modeling

of long temporal contexts,” ISCA, 2015.
[2] P. Ghahremani, V. Manohar, D. Povey, S. Khudanpur, “Acoustic Modelling from the Signal Domain Using

CNNs,” Interspeech, 2016.



Track2 Results
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m Clustering based diarization m +ISS based diarization m +TS-VAD based diarization m + Post-processing

* We ranked 1st on both FULL and CORE sets of Track?2.
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Take-home Messages

- |terative multi-stage processing is important
e Speaker information can be updated stage-by-stage
- Speech separation is a promising direction:
e Currently useful for simple telephone data
* The generalization ability needs to be improved
- Domain dependent methods can achieve better results

 Auxiliary techniques should be used flexibly (e.g. Speech enhancement)



Thanks
Q&A



